Abstract
The two principal tRNA Lys isoaccepting species of Bacillus subtilis were compared in their functional activity in translating rabbit globin. Although neither species demonstrates any preference in reading either of the lysine codons, there is an overall preference for tRNa Lys 3 in lysine incorporation. The ratios of lysine incorporated by the two species into the different lysine-containing sites in the globin subunits vary over a more than two-fold range. As described in the accompanying paper, tRNA Lys 1 is a hypomodified form of tRNA Lys 3. Consistent with studies on other rRNA species, the fully modified isoacceptor functions preferentially. In contrast to these results, however, the fully modified isoacceptor (tRNA Lys 3) is found predominantly in rapidly dividing cells while the hypomodified isoacceptor (tRNA Lys 1) predominates in the stationary cells and spores of B.l subtilis.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Carpousis A., Christner P., Rosenbloom J. Preferential usage of tRNA isoaccepting species in collagen synthesis. J Biol Chem. 1977 Nov 25;252(22):8023–8026. [PubMed] [Google Scholar]
- Chuang R. Y., Doi R. H. Characterization of lysine transfer ribonucleic acid from vegetative cells and spores of Bacillus subtilis. J Biol Chem. 1972 Jun 10;247(11):3476–3484. [PubMed] [Google Scholar]
- Conlon-Hollingshead C., Ortwerth B. J. Lys-tRNA levels and cell division in mouse 3T3 cells. Exp Cell Res. 1980 Jul;128(1):171–180. doi: 10.1016/0014-4827(80)90400-0. [DOI] [PubMed] [Google Scholar]
- Efstratiadis A., Kafatos F. C., Maniatis T. The primary structure of rabbit beta-globin mRNA as determined from cloned DNA. Cell. 1977 Apr;10(4):571–585. doi: 10.1016/0092-8674(77)90090-3. [DOI] [PubMed] [Google Scholar]
- Ehrenstein G., Weisblum B., Benzer S. THE FUNCTION OF sRNA AS AMINO ACID ADAPTOR IN THE SYNTHESIS OF HEMOGLOBIN. Proc Natl Acad Sci U S A. 1963 May;49(5):669–675. doi: 10.1073/pnas.49.5.669. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gefter M. L., Russell R. L. Role modifications in tyrosine transfer RNA: a modified base affecting ribosome binding. J Mol Biol. 1969 Jan 14;39(1):145–157. doi: 10.1016/0022-2836(69)90339-8. [DOI] [PubMed] [Google Scholar]
- Heindell H. C., Liu A., Paddock G. V., Studnicka G. M., Salser W. A. The primary sequence of rabbit alpha-globin mRNA. Cell. 1978 Sep;15(1):43–54. doi: 10.1016/0092-8674(78)90081-8. [DOI] [PubMed] [Google Scholar]
- Katze J. R. Relation of cell type and cell density in tissue culture to the isoaccepting spectra of the nucleoside Q containing tRNAs: tRNATyr, tRNAHis, tRNAAsn and tRNAAsp. Nucleic Acids Res. 1978 Jul;5(7):2513–2524. doi: 10.1093/nar/5.7.2513. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kelmers A. D., Heatherly D. E. Columns for rapid chromatographic separation of small amounts of tracer-labeled transfer ribonucleic acids. Anal Biochem. 1971 Dec;44(2):486–495. doi: 10.1016/0003-2697(71)90236-3. [DOI] [PubMed] [Google Scholar]
- Lazzarini R. A. Differences in lysine-sRNA from spore and vegetative cells of Bacillus subtillis. Proc Natl Acad Sci U S A. 1966 Jul;56(1):185–190. doi: 10.1073/pnas.56.1.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lodish H. F. Alpha and beta globin messenger ribonucleic acid. Different amounts and rates of initiation of translation. J Biol Chem. 1971 Dec 10;246(23):7131–7138. [PubMed] [Google Scholar]
- McNamara A. L., Smith D. W. The function of the histidine tRNA isoaccepting species in hemoglobin synthesis. J Biol Chem. 1978 Sep 10;253(17):5964–5970. [PubMed] [Google Scholar]
- Menichi B., Arnold H. H., Heyman T., Dirheimer G., Keith G. Primary structure of Bacillus subtilis tRNAsTyr. Biochem Biophys Res Commun. 1980 Jul 16;95(1):461–467. doi: 10.1016/0006-291x(80)90760-3. [DOI] [PubMed] [Google Scholar]
- Smith D. W., McNamara A. L., Rice M., Hatfield D. L. The effects of a post-transcriptional modification on the function of tRNALys isoaccepting species in translation. J Biol Chem. 1981 Oct 10;256(19):10033–10036. [PubMed] [Google Scholar]
- Smith D. W., McNamara A. L. The effect of the Q base modification on the usage of tRNAHis in globin synthesis. Biochem Biophys Res Commun. 1982 Feb 26;104(4):1459–1463. doi: 10.1016/0006-291x(82)91414-0. [DOI] [PubMed] [Google Scholar]
- Tockman J., Vold B. S. In vivo aminoacylation of transfer ribonucleic acid in Bacillus subtilis and evidence for differential utilization of lysine-isoaccepting transfer ribonucleic acid species. J Bacteriol. 1977 Jun;130(3):1091–1097. doi: 10.1128/jb.130.3.1091-1097.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vold B. S. Post-transcriptional modifications of the anticodon loop region: alterations in isoaccepting species of tRNA's during development in Bacillus subtilis. J Bacteriol. 1978 Jul;135(1):124–132. doi: 10.1128/jb.135.1.124-132.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WEISBLUM B., GONANO F., VON EHRENSTEIN, BENZER S. A DEMONSTRATION OF CODING DEGENERACY FOR LEUCINE IN THE SYNTHESIS OF PROTEIN. Proc Natl Acad Sci U S A. 1965 Feb;53:328–334. doi: 10.1073/pnas.53.2.328. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weisblum B., Cherayil J. D., Bock R. M., Söll D. An analysis of arginine codon multiplicity in rabbit hemoglobin. J Mol Biol. 1967 Sep 14;28(2):275–280. doi: 10.1016/s0022-2836(67)80009-3. [DOI] [PubMed] [Google Scholar]
- White B. N., Tener G. M. Activity of a transfer RNA modifying enzyme during the development of Drosophila and its relationship to the su(s) locus. J Mol Biol. 1973 Mar 15;74(4):635–651. doi: 10.1016/0022-2836(73)90054-5. [DOI] [PubMed] [Google Scholar]
- Yamada Y., Ishikura H. Nucleotide sequence of a lysine tRNA from Bacillus subtilis. Nucleic Acids Res. 1977 Dec;4(12):4291–4303. doi: 10.1093/nar/4.12.4291. [DOI] [PMC free article] [PubMed] [Google Scholar]
