Skip to main content
PLOS Computational Biology logoLink to PLOS Computational Biology
. 2011 Nov 3;7(11):e1002211. doi: 10.1371/journal.pcbi.1002211

Neural Dynamics as Sampling: A Model for Stochastic Computation in Recurrent Networks of Spiking Neurons

Lars Buesing 1,¤,*, Johannes Bill 1, Bernhard Nessler 1, Wolfgang Maass 1
Editor: Olaf Sporns2
PMCID: PMC3207943  PMID: 22096452

Abstract

The organization of computations in networks of spiking neurons in the brain is still largely unknown, in particular in view of the inherently stochastic features of their firing activity and the experimentally observed trial-to-trial variability of neural systems in the brain. In principle there exists a powerful computational framework for stochastic computations, probabilistic inference by sampling, which can explain a large number of macroscopic experimental data in neuroscience and cognitive science. But it has turned out to be surprisingly difficult to create a link between these abstract models for stochastic computations and more detailed models of the dynamics of networks of spiking neurons. Here we create such a link and show that under some conditions the stochastic firing activity of networks of spiking neurons can be interpreted as probabilistic inference via Markov chain Monte Carlo (MCMC) sampling. Since common methods for MCMC sampling in distributed systems, such as Gibbs sampling, are inconsistent with the dynamics of spiking neurons, we introduce a different approach based on non-reversible Markov chains that is able to reflect inherent temporal processes of spiking neuronal activity through a suitable choice of random variables. We propose a neural network model and show by a rigorous theoretical analysis that its neural activity implements MCMC sampling of a given distribution, both for the case of discrete and continuous time. This provides a step towards closing the gap between abstract functional models of cortical computation and more detailed models of networks of spiking neurons.

Author Summary

It is well-known that neurons communicate with short electric pulses, called action potentials or spikes. But how can spiking networks implement complex computations? Attempts to relate spiking network activity to results of deterministic computation steps, like the output bits of a processor in a digital computer, are conflicting with findings from cognitive science and neuroscience, the latter indicating the neural spike output in identical experiments changes from trial to trial, i.e., neurons are “unreliable”. Therefore, it has been recently proposed that neural activity should rather be regarded as samples from an underlying probability distribution over many variables which, e.g., represent a model of the external world incorporating prior knowledge, memories as well as sensory input. This hypothesis assumes that networks of stochastically spiking neurons are able to emulate powerful algorithms for reasoning in the face of uncertainty, i.e., to carry out probabilistic inference. In this work we propose a detailed neural network model that indeed fulfills these computational requirements and we relate the spiking dynamics of the network to concrete probabilistic computations. Our model suggests that neural systems are suitable to carry out probabilistic inference by using stochastic, rather than deterministic, computing elements.

Introduction

Attempts to understand the organization of computations in the brain from the perspective of traditional, mostly deterministic, models of computation, such as attractor neural networks or Turing machines, have run into problems: Experimental data suggests that neurons, synapses, and neural systems are inherently stochastic [1], especially in vivo, and therefore seem less suitable for implementing deterministic computations. This holds for ion channels of neurons [2], synaptic release [3], neural response to stimuli (trial-to-trial variability) [4], [5], and perception [6]. In fact, several experimental studies arrive at the conclusion that external stimuli only modulate the highly stochastic spontaneous firing activity of cortical networks of neurons [7], [8]. Furthermore, traditional models for neural computation have been challenged by the fact that typical sensory data from the environment is often noisy and ambiguous, hence requiring neural systems to take uncertainty about external inputs into account. Therefore many researchers have suggested that information processing in the brain carries out probabilistic, rather than logical, inference for making decisions and choosing actions [9][22]. Probabilistic inference has emerged in the 1960’s [23], as a principled mathematical framework for reasoning in the face of uncertainty with regard to observations, knowledge, and causal relationships, which is characteristic for real-world inference tasks. This framework has become tremendously successful in real-world applications of artificial intelligence and machine learning. A typical computation that needs to be carried out for probabilistic inference on a high-dimensional joint distribution Inline graphic is the evaluation of the conditional distribution Inline graphic (or marginals thereof) over some variables of interest, say Inline graphic, given variables Inline graphic. In the following, we will call the set of variables Inline graphic, which we condition on, the observed variables and denote it by Inline graphic.

Numerous studies in different areas of neuroscience and cognitive science have suggested that probabilistic inference could explain a variety of computational processes taking place in neural systems (see [10], [11]). In models of perception the observed variables Inline graphic are interpreted as the sensory input to the central nervous system (or its early representation by the firing response of neurons, e.g., in the LGN in the case of vision), and the variables Inline graphic model the interpretation of the sensory input, e.g., the texture and position of objects in the case of vision, which might be encoded in the response of neurons in various higher cortical areas [15]. Furthermore, in models for motor control the observed variables Inline graphic often consist not only of sensory and proprioceptive inputs to the brain, but also of specific goals and constraints for a planned movement [24][26], whereas inference is carried out over the variables Inline graphic representing a motor plan or motor commands to muscles. Recent publications show that human reasoning and learning can also be cast into the form of probabilistic inference problems [27][29]. In these models learning of concepts, ranging from concrete to more abstract ones, is interpreted as inference in lower and successively higher levels of hierarchical probabilistic models, giving a consistent description of inductive learning within and across domains of knowledge.

In spite of this active research on the functional level of neural processing, it turned out to be surprisingly hard to relate the computational machinery required for probabilistic inference to experimental data on neurons, synapses, and neural systems. There are mainly two different approaches for implementing the computational machinery for probabilistic inference in “neural hardware”. The first class of approaches builds on deterministic methods for evaluating exactly or approximately the desired conditional and/or marginal distributions, whereas the second class relies on sampling from the probability distributions in question. Multiple models in the class of deterministic approaches implement algorithms from machine learning called message passing or belief propagation [30][33]. By clever reordering of sum and product operators occurring in the evaluation of the desired probabilities, the total number of computation steps are drastically reduced. The results of subcomputations are propagated as "messages" or "beliefs" that are sent to other parts of the computational network. Other deterministic approaches for representing distributions and performing inference are probabilistic population code (PPC) models [34]. Although deterministic approaches provide a theoretically sound hypothesis about how complex computations can possibly be embedded in neural networks and explain aspects of experimental data, it seems difficult (though not impossible) to conciliate them with other aspects of experimental evidence, such as stochasticity of spiking neurons, spontaneous firing, trial-to-trial variability, and perceptual multistability.

Therefore other researchers (e.g., [16][18], [35]) have proposed to model computations in neural systems as probabilistic inference based on a different class of algorithms, which requires stochastic, rather than deterministic, computational units. This approach, commonly referred to as sampling, focuses on drawing samples, i.e., concrete values for the random variables that are distributed according to the desired probability distribution. Sampling can naturally capture the effect of apparent stochasticity in neural responses and seems to be furthermore consistent with multiple experimental effects reported in cognitive science literature [17], [18]. On the conceptual side, it has proved to be difficult to implement learning in message passing and PPC network models. In contrast, following the lines of [36], the sampling approach might be well suited to incorporate learning.

Previous network models that implement sampling in neural networks are mostly based on a special sampling algorithm called Gibbs (or general Metropolis-Hastings) sampling [9], [17], [18], [37]. The dynamics that arise from this approach, the so-called Glauber dynamics, however are only superficially similar to spiking neural dynamics observed in experiments, rendering these models rather abstract. Building on and extending previous models, we propose here a family of network models, that can be shown to exactly sample from any arbitrary member of a well-defined class of probability distributions via their inherent network dynamics. These dynamics incorporate refractory effects and finite durations of postsynaptic potentials (PSPs), and are therefore more biologically realistic than existing approaches. Formally speaking, our model implements Markov chain Monte Carlo (MCMC) sampling in a spiking neural network. In contrast to prior approaches however, our model incorporates irreversible dynamics (i.e., no detailed balance) allowing for finite time PSPs and refractory mechanisms. Furthermore, we also present a continuous time version of our network model. The resulting stochastic dynamical system can be shown to sample from the correct distribution. In general, continuous time models arguably provide a higher amount of biological realism compared to discrete time models.

The paper is structured in the following way. First we provide a brief introduction to MCMC sampling. We then define the neural network model whose neural activity samples from a given class of probability distributions. The model will be first presented in discrete time together with some illustrative simulations. An extension of the model to networks of more detailed spiking neuron models which feature a relative refractory mechanism is presented. Furthermore, it is shown how the neural network model can also be formulated in continuous time. Finally, as a concrete simulation example we present a simple network model for perceptual multistability.

Results

Recapitulation of MCMC sampling

In machine learning, sampling is often considered the “gold standard” of inference methods, since, assuming that we can sample from the distribution in question, and assuming enough computational resources, any inference task can be carried out with arbitrary precision (in contrast to some deterministic approximate inference methods such as variational inference). However sampling from an arbitrary distribution can be a difficult problem in itself, as, e.g., many distributions can only be evaluated modulo a global constant (the partition function). In order to circumvent these problems, elaborate MCMC sampling techniques have been developed in machine learning and statistics [38]. MCMC algorithms are based on the following idea: instead of producing an ad-hoc sample, a process that is heuristically comparable to a global search over the whole state space of the random variables, MCMC methods produce a new sample via a “local search” around a point in the state space that is already (approximately) a sample from the distribution.

More formally, a Markov chain Inline graphic (in discrete time) is defined by a set Inline graphic of states (we consider for discrete time only the case where Inline graphic has a finite size, denoted by Inline graphic) together with a transition operator Inline graphic. The operator Inline graphic is a conditional probability distribution Inline graphic over the next state Inline graphic given a preceding state Inline graphic. The Markov chain Inline graphic is started in some initial state Inline graphic, and moves through a trajectory of states Inline graphic via iterated application of the stochastic transition operator Inline graphic. More precisely, if Inline graphic is the state at time Inline graphic, then the next state Inline graphic is drawn from the conditional probability distribution Inline graphic. An important theorem from probability theory (see, e.g., p. 232 in [39]) states that if Inline graphic is irreducible (i.e., any state in Inline graphic can be reached from any other state in Inline graphic in finitely many steps with probability Inline graphic) and aperiodic (i.e., its state transitions cannot be trapped in deterministic cycles), then the probability Inline graphic converges for Inline graphic to a probability Inline graphic that does not depend on the initial state Inline graphic. This state distribution Inline graphic is called the invariant distribution of Inline graphic. The irreducibility of Inline graphic implies that it is the only distribution over the states Inline graphic that is invariant under its transition operator Inline graphic, i.e.

graphic file with name pcbi.1002211.e041.jpg (1)

Thus, in order to carry out probabilistic inference for a given distribution Inline graphic, it suffices to construct an irreducible and aperiodic Markov chain Inline graphic that leaves Inline graphic invariant, i.e., satisfies equation (1). Then one can answer numerous probabilistic inference questions regarding Inline graphic without any numerical computations of probabilities. Rather, one plugs in the observed values for some of the random variables (RVs) and simply collects samples from the conditional distribution over the other RVs of interest when the Markov chain approaches its invariant distribution.

A convenient and popular method for the construction of an operator Inline graphic for a given distribution Inline graphic is looking for operators Inline graphic that satisfy the following detailed balance condition,

graphic file with name pcbi.1002211.e049.jpg (2)

for all Inline graphic. A Markov chain that satisfies (2) is said to be reversible. In particular, the Gibbs and Metropolis-Hastings algorithms employ reversible Markov chains. A very useful property of (2) is that it implies the invariance property (1), and this is in fact the standard method for proving (1). However, as our approach makes use of irreversible Markov chains as explained below, we will have to prove (1) directly.

Neural sampling

Let Inline graphic be some arbitrary joint distribution over Inline graphic binary variables Inline graphic that only takes on values Inline graphic. We will show that under a certain computability assumption on Inline graphic a network Inline graphic consisting of Inline graphic spiking neurons Inline graphic can sample from Inline graphic using its inherent stochastic dynamics. More precisely, we show that the stochastic firing activity of Inline graphic can be viewed as a non-reversible Markov chain that samples from the given probability distribution Inline graphic. If a subset Inline graphic of the variables are observed, modelled as the corresponding neurons being “clamped” to the observed values, the remaining network samples from the conditional distribution of the remaining variables given the observables. Hence, this approach offers a quite natural implementation of probabilistic inference. It is similar to sampling approaches which have already been applied extensively, e.g., in Boltzmann machines, however our model is more biologically realistic as it incorporates aspects of the inherent temporal dynamics and spike-based communication of a network of spiking neurons. We call this approach neural sampling in the remainder of the paper.

In order to enable a network Inline graphic of spiking neurons to sample from a distribution Inline graphic of binary variables Inline graphic, one needs to specify how an assignment Inline graphic of values to these binary variables can be represented by the spiking activity of the network Inline graphic and vice versa. A spike, or action potential, of a biological neuron Inline graphic has a short duration of roughly Inline graphic. But the effect of such spike, both on the neuron Inline graphic itself (in the form of refractory processes) and on the membrane potential of other neurons (in the form of postsynaptic potentials) lasts substantially longer, on the order of Inline graphic to Inline graphic. In order to capture this temporally extended effect of each spike, we fix some parameter Inline graphic that models the average duration of these temporally extended processes caused by a spike. We say that a binary vector Inline graphic is represented by the firing activity of the network Inline graphic at time Inline graphic for Inline graphic iff:

graphic file with name pcbi.1002211.e078.jpg (3)

In other words, any spike of neuron Inline graphic sets the value of the associated binary variable Inline graphic to 1 for a duration of length Inline graphic.

An obvious consequence of this definition is that the binary vector Inline graphic that is defined by the activity of Inline graphic at time Inline graphic does not fully capture the internal state of this stochastic system. Rather, one needs to take into account additional non-binary variables Inline graphic, where the value of Inline graphic at time Inline graphic specifies when within the time interval Inline graphic the neuron Inline graphic has fired (if it has fired within this time interval, thereby causing Inline graphic at time Inline graphic). The neural sampling process has the Markov property only with regard to these more informative auxiliary variables Inline graphic. Therefore our analysis of neural sampling will focus on the temporal evolution of these auxiliary variables. We adopt the convention that each spike of neuron Inline graphic sets the value of Inline graphic to its maximal value Inline graphic, from which it linearly decays back to Inline graphic during the subsequent time interval of length Inline graphic.

For the construction of the sampling network Inline graphic, we assume that the membrane potential Inline graphic of neuron Inline graphic at time Inline graphic equals the log-odds of the corresponding variable Inline graphic to be active, and refer to this property as neural computability condition:

graphic file with name pcbi.1002211.e103.jpg (4)

where we write Inline graphic for Inline graphic and Inline graphic for the current values Inline graphic of all other variables Inline graphic with Inline graphic. Under the assumption we make in equation (4), i.e., that the neural membrane potential reflects the log-odds of the corresponding variable Inline graphic, it is required that each single neuron in the network can actually compute the right-hand side of equation (4), i.e., that it fulfills the neural computability condition.

A concrete class of probability distributions, that we will use as an example in the remainder, are Boltzmann distributions:

graphic file with name pcbi.1002211.e111.jpg (5)

with arbitrary real valued parameters Inline graphic which satisfy Inline graphic and Inline graphic (the constant Inline graphic ensures the normalization of Inline graphic). For the Boltzmann distribution, condition (4) is satisfied by neurons Inline graphic with the standard membrane potential

graphic file with name pcbi.1002211.e118.jpg (6)

where Inline graphic is the bias of neuron Inline graphic (which regulates its excitability), Inline graphic is the strength of the synaptic connection from neuron Inline graphic to Inline graphic, and Inline graphic approximates the time course of the postsynaptic potential in neuron Inline graphic caused by a firing of neuron Inline graphic with a constant signal of duration Inline graphic (i.e., a square pulse). As we will describe below, spikes of neuron Inline graphic are evoked stochastically depending on the current membrane potential Inline graphic and the auxiliary variable Inline graphic.

The neural computability condition (4) links classes of probability distributions to neuron and synapse models in a network of spiking neurons. As shown above, Boltzmann distributions satisfy the condition if one considers point neuron models which compute a linear weighted sum of the presynaptic inputs. The class of distributions can be extended to include more complex distributions using a method proposed in [40] which is based on the following idea. Neuron Inline graphic representing the variable Inline graphic is not directly influenced by the activities Inline graphic of the presynaptic neurons, but via intermediate nonlinear preprocessing elements. This preprocessing might be implemented by dendrites or other (inter-) neurons and is assumed to compute nonlinear combinations of the presynaptic activities Inline graphic (similar to a kernel). This allows the membrane potential Inline graphic, and therefore the log-odds ratio on the right-hand side of (4), to represent a more complex function of the activities Inline graphic, giving rise to more complex joint distributions Inline graphic. The concrete implementation of non-trivial directed and undirected graphical models with the help of preprocessing elements in the neural sampling framework is subject of current research. For the examples given in this study, we focus on the standard form of the membrane potential (6) of point neurons. As shown below, these spiking network models can emulate any Boltzmann machine (BM) [36].

A substantial amount of preceding studies has demonstrated that BMs are very powerful, and that the application of suitable learning algorithms for setting the weights Inline graphic makes it possible to learn and represent complex sensory processing tasks by such distributions [37], [41]. In applications in statistics and machine learning using such Boltzmann distributions, sampling is typically implemented by Gibbs sampling or more general reversible MCMC methods. However, it is difficult to model some neural processes, such as an absolute refractory period or a postsynaptic potential (PSP) of fixed duration, using a reversible Markov chain, but they are more conveniently modelled using an irreversible one. As we wish to keep the computational power of BMs and at the same time to augment the sampling procedure with aspects of neural dynamics (such as PSPs with fixed durations, refractory mechanisms) to increase biological realism, we focus in the following on irreversible MCMC methods (keeping in mind that this might not be the only possible way to achieve these goals).

Neural sampling in discrete time

Here we describe neural dynamics in discrete time with an absolute refractory period Inline graphic. We interpret one step of the Markov chain as a time step Inline graphic in biological real time. The dynamics of the variable Inline graphic, that describes the time course of the effect of a spike of neuron Inline graphic, are defined in the following way. Inline graphic is set to the value Inline graphic when neuron Inline graphic fires, and decays by Inline graphic at each subsequent discrete time step. The parameter Inline graphic is chosen to be some integer, so that Inline graphic decays back to Inline graphic in exactly Inline graphic time steps. The neuron can only spike (with a probability that is a function of its current membrane potential Inline graphic) if its variable Inline graphic. If however, Inline graphic, the neuron is considered refractory and it cannot spike, but its Inline graphic is reduced by 1 per time step. To show that these simple dynamics do indeed sample from the given distribution Inline graphic, we proceed in the following way. We define a joint distribution Inline graphic which has the desired marginal distribution Inline graphic. Further we formalize the dynamics informally described above as a transition operator Inline graphic operating on the state vector Inline graphic. Finally, in the Methods section, we show that Inline graphic is the unique invariant distribution of this operator Inline graphic, i.e., that the dynamics described by Inline graphic produce samples Inline graphic from the desired distribution Inline graphic. We refer to sampling through networks with this stochastic spiking mechanism as neural sampling with absolute refractory period due to the persistent refractory process.

Given the distribution Inline graphic that we want to sample from, we define the following joint distribution Inline graphic over the neural variables:

graphic file with name pcbi.1002211.e167.jpg (7)

This definition of Inline graphic simply expresses that if Inline graphic, then the auxiliary variable Inline graphic can assume any value in Inline graphic with equal probability. On the other hand Inline graphic necessarily assumes the value Inline graphic if Inline graphic (i.e., when the neuron is in its resting state).

The state transition operator Inline graphic can be defined in a transparent manner as a composition of Inline graphic transition operators, Inline graphic, where Inline graphic only updates the variables Inline graphic and Inline graphic of neuron Inline graphic, i.e., the neurons are updated sequentially in the same order (this severe restriction will become obsolete in the case of continuous time discussed below). We define the composition as Inline graphic, i.e., Inline graphic is applied prior to Inline graphic. The new values of Inline graphic and Inline graphic only depend on the previous value Inline graphic and on the current membrane potential Inline graphic. The interesting dynamics take place in the variable Inline graphic. They are illustrated in Figure 1 where the arrows represent transition probabilities greater than 0.

Figure 1. Neuron model with absolute refractory mechanism.

Figure 1

The figure shows a schematic of the transition operator Inline graphic for the internal state variable Inline graphic of a spiking neuron Inline graphic with an absolute refractory period. The neuron can fire in the resting state Inline graphic and in the last refractory state Inline graphic.

If the neuron Inline graphic is not refractory, i.e., Inline graphic, it can spike (i.e., a transition from Inline graphic to Inline graphic) with probability

graphic file with name pcbi.1002211.e199.jpg (8)

where Inline graphic is the standard sigmoidal activation function and the Inline graphic denotes the natural logarithm. The term Inline graphic is the current membrane potential, which depends on the current values of the variables Inline graphic for Inline graphic. The term Inline graphic in (8) reflects the granularity of a chosen discrete time scale. If it is very fine (say one step equals one microsecond), then Inline graphic is large, and the firing probability at each specific discrete time step is therefore reduced. If the neuron in a state with Inline graphic does not spike, Inline graphic relaxes into the resting state Inline graphic corresponding to a non-refractory neuron.

If the neuron is in a refractory state, i.e., Inline graphic, its new variable Inline graphic assumes deterministically the next lower value Inline graphic, reflecting the inherent temporal process:

graphic file with name pcbi.1002211.e213.jpg (9)

After the transition of the auxiliary variable Inline graphic, the binary variable Inline graphic is deterministically set to a consistent state, i.e., Inline graphic if Inline graphic and Inline graphic if Inline graphic.

It can be shown that each of these stochastic state transition operators Inline graphic leaves the given distribution Inline graphic invariant, i.e., satisfies equation (1). This implies that any composition or mixture of these operators Inline graphic also leaves Inline graphic invariant, see, e.g., [38]. In particular, the composition Inline graphic of these operators Inline graphic leaves Inline graphic invariant, which has a quite natural interpretation as firing dynamics of the spiking neural network Inline graphic: At each discrete time step the variables Inline graphic are updated for all neurons Inline graphic, where the update of Inline graphic takes preceding updates for Inline graphic with Inline graphic into account. Alternatively, one could also choose at each discrete time step a different order for updates according to [38]. The assumption of a well-regulated updating policy will be overcome in the continuous-time limit, i.e., in case where the neural dynamics are described as a Markov jump process. In the methods section we prove the following central theorem:

Theorem 1

Inline graphic is the unique invariant distribution of operator Inline graphic, i.e., Inline graphic is aperiodic and irreducible and satisfies

graphic file with name pcbi.1002211.e236.jpg (10)

The proof of this Theorem is provided by Lemmata 1 – 3 in the Methods section. The statement that Inline graphic (which is composed of the operators Inline graphic) is irreducible and aperiodic ensures that Inline graphic is the unique invariant distribution of the Markov chain defined by Inline graphic, i.e., that irrespective of the initial network state the successive application of Inline graphic explores the whole state space in a non-periodic manner.

This theorem guarantees that after a sufficient “burn-in” time (more precisely in the limit of an infinite “burn-in” time), the dynamics of the network, which are given by the transition operator Inline graphic, produce samples from the distribution Inline graphic. As by construction Inline graphic, the Markov chain provides samples from the given distribution Inline graphic. Furthermore, the network Inline graphic can carry out probabilistic inference for this distribution. For example, Inline graphic can be used to sample from the posterior distribution Inline graphic over Inline graphic given Inline graphic. One just needs to clamp those neurons Inline graphic to the corresponding observed values. This could be implemented by injecting a strong positive (negative) current into the units with Inline graphic (Inline graphic). Then, as soon as the stochastic dynamics of Inline graphic has converged to its invariant distribution, the averaged firing rate of neuron Inline graphic is proportional to the following desired marginal probability

graphic file with name pcbi.1002211.e256.jpg

In a biological neural system this result of probabilistic inference could for example be read out by an integrator neuron that counts spikes from this neuron Inline graphic within a behaviorally relevant time window of a few hundred milliseconds, similarly as the experimentally reported integrator neurons in area LIP of monkey cortex [20], [21]. Another readout neuron that receives spike input from Inline graphic could at the same time estimate Inline graphic for another RV Inline graphic. But valuable information for probabilistic inference is not only provided by firing rates or spike counts, but also by spike correlations of the neurons Inline graphic in Inline graphic. For example, the probability Inline graphic can be estimated by a readout neuron that responds to superpositions of EPSPs caused by near-coincident firing of neurons Inline graphic and Inline graphic within a time interval of length Inline graphic. Thus, a large number of different probabilistic inferences can be carried out efficiently in parallel by readout neurons that receive spike input from different subsets of neurons in the network Inline graphic.

Variation of the discrete time model with a relative refractory mechanism

For the previously described simple neuron model, the refractory process was assumed to last for Inline graphic time steps, exactly as long as the postsynaptic potentials caused by each spike. In this section we relax this assumption by introducing a more complex and biologically more realistic neuron model, where the duration of the refractory process is decoupled from the duration Inline graphic of a postsynaptic potential. Thus, this model can for example also fire bursts of spikes with an interspike interval Inline graphic. The introduction of this more complex neuron model comes at the price that one can no longer prove that a network of such neurons samples from the desired distribution Inline graphic. Nevertheless, if the sigmoidal activation function Inline graphic is replaced by a different activation function Inline graphic, one can still prove that the sampling is “locally correct”, as specified in equation (12) below. Furthermore, our computer simulations suggest that also globally the error introduced by the more complex neuron model is not functionally significant, i.e. that statistical dependencies between the RVs Inline graphic are still faithfully captured.

The neuron model with a relative refractory period is defined in the following way. Consider some arbitrary refractory function Inline graphic with Inline graphic, and Inline graphic for Inline graphic. The idea is that Inline graphic models the readiness of the neuron to fire in its state Inline graphic. This readiness has value Inline graphic when the neuron has fired at the preceding time step (i.e., Inline graphic), and assumes the resting state Inline graphic when Inline graphic has dropped to Inline graphic. In between, the readiness may take on any non-negative value according to the function Inline graphic. The function Inline graphic does not need to be monotonic, allowing for example that it increases to high values in between, yielding a preferred interspike interval of a oscillatory neuron. The firing probability of neuron Inline graphic in state Inline graphic is given by Inline graphic, where Inline graphic is an appropriate function of the membrane potential as described below. Thus this function Inline graphic is closely related to the function Inline graphic (called afterpotential) in the spike response model [5] as well as to the self-excitation kernel in Generalized Linear Models [42]. In general, different neurons in the network may have different refractory profiles, which can be modeled by a different refractory function for each neuron Inline graphic. However for the sake of notational simplicity we assume a single refractory function in the following.

In the presence of this refractory function Inline graphic one needs to replace the sigmoidal activation function Inline graphic by a suitable function Inline graphic that satisfies the condition

graphic file with name pcbi.1002211.e298.jpg (11)

for all real numbers Inline graphic. This equation can be derived (see Methods section Lemma 0) if one requires each neuron Inline graphic to represent the correct distribution Inline graphic over Inline graphic conditioned the variables Inline graphic. One can show that, for any Inline graphic as above, there always exists a continuous, monotonic function Inline graphic which satisfies this equation (see Lemma 0 in Methods). Unfortunately (11) cannot be solved analytically for Inline graphic in general. Hence, for simulations we approximate the function Inline graphic for a given Inline graphic by numerically solving (11) on a grid and interpolating between the grid points with a constant function. Examples for several functions Inline graphic and the associated Inline graphic are shown in Figure 2B and Figure 2C respectively. Furthermore, spike trains emitted by single neurons with these refractory functions Inline graphic and the corresponding functions Inline graphic are shown in Figure 2D for the case of piecewise constant membrane potentials. This figure indicates, that functions Inline graphic that define a shorter refractory effect lead to higher firing rates and more irregular firing. It is worth noticing that the standard activation function Inline graphic is the solution of equation (11) for the absolute refractory function, i.e., for Inline graphic and Inline graphic for Inline graphic.

Figure 2. Neuron model with relative refractory mechanism.

Figure 2

The figure shows the transition operator Inline graphic, refractory functions Inline graphic and activation functions Inline graphic for the neuron model with relative refractory mechanism. (A) Transition probabilities of the internal variable Inline graphic given by Inline graphic. (B) Three examples of possible refractory functions Inline graphic. They assume value Inline graphic when the neuron cannot spike, and return to value Inline graphic (full readiness to fire again) with different time courses. The value of Inline graphic at intermediate time points regulates the current probability of firing of neuron Inline graphic (see A). The x-axis is equivalent to the number of time steps since last spike (running from 0 to Inline graphic from left to right). (C) Associated activation functions Inline graphic according to (11). (D) Spike trains produced by the resulting three different neuron models with (hypothetical) membrane potentials that jump at time Inline graphic from a constant low value to a constant high value. Black horizontal bars indicate spikes, and the active states Inline graphic are indicated by gray shaded areas of duration Inline graphic after each spike. It can be seen from this example that different refractory mechanisms give rise to different spiking dynamics.

The transition operator Inline graphic is defined for this model in a very similar way as before. However, for Inline graphic, when the variable Inline graphic was deterministically reduced by Inline graphic in the simpler model (yielding Inline graphic), this reduction occurs now only with probability Inline graphic. With probability Inline graphic the operator Inline graphic sets Inline graphic, modeling the firing of another spike of neuron Inline graphic at this time point. The neural computability condition (4) remains unchanged, e.g., Inline graphic for a Boltzmann distribution. A schema of the stochastic dynamics of this local state transition operator Inline graphic is shown in Figure 2A.

This transition operator Inline graphic has the following properties. In Lemma 0 in Methods it is proven that the unique invariant distribution of Inline graphic, denoted as Inline graphic, gives rise to the correct marginal distribution over Inline graphic, i.e.

graphic file with name pcbi.1002211.e349.jpg

This means that a neuron whose dynamics is described by Inline graphic samples from the correct distribution Inline graphic if it receives a static input from the other neurons in the network, i.e., as long as its membrane potential Inline graphic is constant. Hence the “local” computation performed by such neuron can be considered as correct. If however, several neurons in the network change their states in a short interval of time, the joint distribution over Inline graphic is in general not the desired one, i.e., Inline graphic, where Inline graphic denotes the invariant distribution of Inline graphic. In the Methods section, we present simulation results that indicate that the error of the approximation to the desired Boltzmann distributions introduced by neural sampling with relative refractory mechanism is rather minute. It is shown that the neural sampling approximation error is orders of magnitudes below the one introduced by a fully factorized distribution (which amounts to assuming correct marginal distributions Inline graphic and independent neurons).

To illustrate the sampling process with the relative refractory mechanism, we examine a network of Inline graphic neurons. We aim to sample from a Boltzmann distribution (5) with parameters Inline graphic, Inline graphic being randomly drawn from normal distributions. For the neuron model, we use the relative refractory mechanism shown in the mid row of Figure 2B. A detailed description of the simulation and the parameters used is given in the Methods section. A spike pattern of the resulting sampling network is shown in Figure 3A. The network features a sparse, irregular spike response with average firing rate of Inline graphic. For one neuron Inline graphic, indicated with orange spikes, the internal dynamics are shown in Figure 3B. After each action potential the neuron’s refractory function Inline graphic drops to zero and reduces the probability of spiking again in a short time interval. The influence of the remaining network Inline graphic is transmitted to neuron Inline graphic via PSPs of duration Inline graphic and sums up to the fluctuating membrane potential Inline graphic. As reflected in the highly variable membrane potential even this small network exhibits rich interactions. To represent the correct distribution Inline graphic over Inline graphic conditioned on Inline graphic, the neuron Inline graphic continuously adapts its instantaneous firing rate. To quantify the precision with which the spiking network draws samples from the target distribution (5), Figure 3C shows the joint distribution of Inline graphic neurons. For comparison we accompany the distribution of sampled network states with the result obtained from the standard Gibbs sampling algorithm (considered as the ground truth). Since the number of possible states Inline graphic grows exponentially in the number of neurons, we restrict ourselves for visualization purposes to the distribution Inline graphic of the gray shaded units and marginalize over the remaining network. The probabilities are estimated from Inline graphic samples, i.e., from Inline graphic successive states Inline graphic of the Markov chain. Stochastic deviations of the estimated probabilities due to the finite number of samples are quite small (typical errors Inline graphic) and are comparable to systematic deviations due to the only locally correct computation of neurons with relative refractory mechanism. In the Methods section, we present further simulation results showing that the proposed networks consisting of neurons with relative refractory mechanism approximate the desired target distributions faithfully over a large range of distribution parameters.

Figure 3. Sampling from a Boltzmann distribution by spiking neurons with relative refractory mechanism.

Figure 3

(A) Spike raster of the network. (B) Traces of internal state variables of a neuron (# 26, indicated by orange spikes in A). The rich interaction of the network gives rise to rapidly changing membrane potentials and instantaneous firing rates. (C) Joint distribution of 5 neurons (gray shaded area in A) obtained by the spiking neural network and Gibbs sampling from the same distribution. Active states Inline graphic are indicated by a black dot, using one row for each neuron Inline graphic, the columns list all Inline graphic possible states Inline graphic of these Inline graphic neurons. The tight match between both distributions suggests that the spiking network represents the target probability distribution Inline graphic with high accuracy.

In order to illustrate that the proposed sampling networks feature biologically quite realistic spiking dynamics, we present in the Methods section several neural firing statistics (e.g., the inter-spike interval histogram) of the network model. In general, the statistics computed from the model match experimentally observed statistics well. The proposed network models are based on the assumption of rectangular-shaped, renewal PSPs. More precisely, we define renewal (or non-additive) PSPs in the following way. Renewal PSPs evoked by a single synapse do not add up but are merely prolonged in their duration (according to equation (6)); renewal PSPs elicited at different synapses nevertheless add up in the normal way. In Methods we investigate the impact of replacing the theoretically ideal rectangular-shaped, renewal PSPs with biologically more realistic alpha-shaped, additive PSPs. Simulation results suggest that the network model with alpha-shaped PSPs does not capture the target distribution as accurately as with the theoretically ideal PSP shapes, statistical dependencies between the RVs Inline graphic are however still approximated reasonably well.

Neural sampling in continuous time

The neural sampling model proposed above was formulated in discrete time of step size Inline graphic, inspired by the discrete time nature of MCMC techniques in statistics and machine learning as well as to make simulations possible on digital computers. However, models in continuous time (e.g., ordinary differential equations) are arguably more natural and “realistic” descriptions of temporally varying biological processes. This gives rise to the question whether one can find a sensible limit of the discrete time model in the limit Inline graphic, yielding a sampling network model in continuous time. Another motivation for considering continuous time models for neural sampling is the fact that many mathematical models for recurrent networks are formulated in continuous time [5], and a comparison to these existing models would be facilitated. Here we propose a stochastically spiking neural network model in continuous time, whose states still represent correct samples from the desired probability distribution Inline graphic at any time Inline graphic. These types of models are usually referred to as Markov jump processes. It can be shown that discretizing this continuous time model yields the discrete time model defined earlier, which thus can be regarded as a version suitable for simulations on a digital computer.

We define the continuous time model in the following way. Let Inline graphic, for Inline graphic, denote the firing times of neuron Inline graphic. The refractory process of this neuron, in analogy to Figure 1 and equation (8)-(9) for the case of discrete time, is described by the following differential equation for the auxiliary variable Inline graphic, which may now assume any nonnegative real number Inline graphic:

graphic file with name pcbi.1002211.e395.jpg (12)

Here Inline graphic denotes Dirac’s Delta centered at the spike time Inline graphic. This differential equation describes the following simple dynamics. The auxiliary variable Inline graphic decays linearly with time constant Inline graphic when the neuron is refractory, i.e., Inline graphic. Once Inline graphic arrives at its resting state Inline graphic it remains there, corresponding to the neuron being ready to spike again (more precisely, in order to avoid point measures we set it to a random value in Inline graphic, see Methods). In the resting state, the neuron has the probability density Inline graphic to fire at every time Inline graphic. If it fires at Inline graphic, this results in setting Inline graphic, which is formalized in equation (12) by the sum of Dirac Delta’s Inline graphic. Here the current membrane potential Inline graphic at time Inline graphic is defined as in the discrete time case, e.g., by Inline graphic for the case of a Boltzmann distribution (5). The binary variable Inline graphic is defined to be 1 if Inline graphic and 0 if the neuron is in the resting state Inline graphic. Biologically, the term Inline graphic can again be interpreted as the value at time Inline graphic of a rectangular-shaped PSP (with a duration of Inline graphic) that neuron Inline graphic evokes in neuron Inline graphic. As the spikes are discrete events in continuous time, the probability of two or more neurons spiking at the same time is zero. This allows for updating all neurons in parallel using a differential equation.

In analogy to the discrete time case, the neural network in continuous time can be shown to sample from the desired distribution Inline graphic, i.e., Inline graphic is an invariant distribution of the network dynamics defined above. However, to establish this fact, one has to rely on a different mathematical framework. The probability distribution Inline graphic of the auxiliary variables Inline graphic as a function of time Inline graphic, which describes the evolution of the network, obeys a partial differential equation, the so-called Differential-Chapman-Kolmogorov equation (see [43]):

graphic file with name pcbi.1002211.e425.jpg (13)

where the operator Inline graphic, which captures the dynamics of the network, is implicitly defined by the differential equations (12) and the spiking probabilities. This operator Inline graphic is the continuous time equivalent to the transition operator Inline graphic in the discrete time case. The operator Inline graphic consists here of two components. The drift term captures the deterministic decay process of Inline graphic, stemming from the term Inline graphic in equation (12). The jump term describes the non-continuous aspects of the path Inline graphic associated with “jumping” from Inline graphic to Inline graphic at the time Inline graphic when the neuron fires.

In the Methods section we prove that the resulting time invariant distribution, i.e., the distribution that solves Inline graphic, now denoted Inline graphic as it is not a function of time, gives rise to the desired marginal distribution Inline graphic over Inline graphic:

graphic file with name pcbi.1002211.e440.jpg (14)

where Inline graphic and Inline graphic if Inline graphic and Inline graphic otherwise. Inline graphic denotes Kronecker’s Delta with Inline graphic if Inline graphic and Inline graphic otherwise. Thus, the function Inline graphic simply reflects the definition that Inline graphic if Inline graphic and 0 otherwise. For an explicit definition of Inline graphic, a proof of the above statement, and some additional comments see the Methods section.

The neural samplers in discrete and continuous time are closely related. The model in discrete time provides an increasingly more precise description of the inherent spike dynamics when the duration Inline graphic of the discrete time step is reduced, causing an increase of Inline graphic (such that Inline graphic is constant) and therefore a reduced firing probability of each neuron at any discrete time step (see the term Inline graphic in equation (8)). In the limit of Inline graphic approaching Inline graphic, the probability that two or more neurons will fire at the same time approaches Inline graphic, and the discrete time sampler becomes equal to the continuous time system defined above, which updates all units in parallel.

It is also possible to formulate a continuous time version of the neural sampler based on neuron models with relative refractory mechanisms. In the Methods section the resulting continuous time neuron model with a relative refractory mechanism is defined. Theoretical results similar to the discrete time case can be derived for this sampler (see Lemmata 9 and 10 in Methods): It is shown that each neuron “locally” performs the correct computation under the assumption of static input from the remaining neurons. However one can no longer prove in general that the global network samples from the target distribution Inline graphic.

Demonstration of probabilistic inference with recurrent networks of spiking neurons in an application to perceptual multistability

In the following we present a network model for perceptual multistability based on the neural sampling framework introduced above. This simulation study is aimed at showing that the proposed network can indeed sample from a desired distribution and also perform inference, i.e., sample from the correct corresponding posterior distribution. It is not meant to be a highly realistic or exhaustive model of perceptual multistability nor of biologically plausible learning mechanisms. Such models would naturally require considerably more modelling work.

Perceptual multistability evoked by ambiguous sensory input, such as a 2D drawing (e.g., Necker cube) that allows for different consistent 3D interpretations, has become a frequently studied perceptual phenomenon. The most important finding is that the perceptual system of humans and nonhuman primates does not produce a superposition of different possible percepts of an ambiguous stimulus, but rather switches between different self-consistent global percepts in a spontaneous manner. Binocular rivalry, where different images are presented to the left and right eye, has become a standard experimental paradigm for studying this effect [44][47]. A typical pair of stimuli are the two images shown in Figure 4A. Here the percepts of humans and nonhuman primates switch (seemingly stochastically) between the two presented orientations. [16][18] propose that several aspects of experimental data on perceptual multistability can be explained if one assumes that percepts correspond to samples from the conditional distribution over interpretations (e.g., different 3D shapes) given the visual input (e.g., the 2D drawing). Furthermore, the experimentally observed fact that percepts tend to be stable on the time scale of seconds suggests that perception can be interpreted as probabilistic inference that is carried out by MCMC sampling which produces successively correlated samples. In [18] it is shown that this MCMC interpretation is also able to qualitatively reproduce the experimentally observed distribution of dominance durations, i.e., the distribution of time intervals between perceptual switches. However, in lack of an adequate model for sampling by a recurrent network of spiking neurons, theses studies could describe this approach only on a rather abstract level, and pointed out the open problem to relate this algorithmic approach to neural processes. We have demonstrated in a computer simulation that the previously described model for neural sampling could in principle fill this gap, providing a modelling framework that is on the one hand consistent with the dynamics of networks of spiking neurons, and which can on the other hand also be clearly understood from the perspective of probabilistic inference through MCMC sampling.

Figure 4. Modeling perceptual multistability as probabilistic inference with neural sampling.

Figure 4

(A) Typical visual stimuli for the left and right eye in binocular rivalry experiments. (B) Tuning curve of a neuron with preferred orientation Inline graphic. (C) Distribution of dominance durations in the trained network under ambiguous input. The red curve shows the Gamma distribution with maximum likelihood on the data. (D) 2-dimensional projection (via population vector) of the distribution Inline graphic encoded in the spiking network showing that it strongly favors coherent global states of arbitrary orientation to incoherent ones (corresponding to population vectors of small magnitude). (E) 2-dimensional projection of the bimodal posterior distribution under an ambiguous input consisting of two different orientations reminiscent of the stimuli shown in A. The black trace shows the temporal evolution of the network state Inline graphic for 500 ms around a perceptual switch. (F) Network states at 3 time points Inline graphic marked in E. Neurons that fired in the preceding 20 ms (see gray bar in G) are plotted in the color of their preferred orientation. Inactive neurons are shown in white. While states Inline graphic and Inline graphic represent rather coherent orientations, Inline graphic shows an incoherent state corresponding to a perceptual switch. Clamped neurons (which the posterior is condition on) are marked by a black dot. (G) Spike raster of the unclamped neurons during a 500 ms epoch marked by the black trace in E. Gray bars indicate the 20 ms time intervals that define the network states shown in F. Altogether this figure shows that a theoretically rigorous probabilistic inference process can be carried out by a network of spiking neurons with a spike raster that is similar to generic recorded data.

In the following we model some essential aspects of an experimental setup for binocular rivalry with grating stimuli (see Figure 4A) in a recurrent network of spiking neurons with the previously described relative refractory mechanism. We assigned to each of the 217 neurons in the network Inline graphic a tuning curve Inline graphic, centered around its preferred orientation Inline graphic as shown in Figure 4B. The preferred orientations Inline graphic of the neurons were chosen to cover the entire interval Inline graphic of possible orientations and were randomly assigned to the neurons. The neurons were arranged on a hexagonal grid as depicted in Figure 4F. Any two neurons with distance Inline graphic were synaptically connected (neighboring units had distance Inline graphic). We assume that these neurons represent neurons in the visual system that have roughly the same or neighboring receptive field, and that each neuron receives visual input from either the left or the right eye. The network connections were chosen such that neurons that have similar (very different) preferred orientations are connected with positive (negative) weights (for details see Methods section).

We examined the resulting distribution Inline graphic over the Inline graphic dimensional network states. To provide an intuitive visualization of these high dimensional network states Inline graphic, we resort to a 2-dimensional projection, the population vector of a state Inline graphic (see Methods for details of the applied population vector decoding scheme). Only the endpoints of the population vectors are drawn (as colored points) in Figure 4D,E. The orientation of the population vector is assumed to correspond to the dominant orientation of the percept, and its distance from the origin encodes the strength of this percept. We also, somewhat informally, call the strength of a percept its coherence and a network state which represents a coherent percept a coherent network state. A coherent network state hence results in a population vector of large magnitude. Each direction of a population vector is color coded in Figure 4D,E, using the color code for directions shown on the right hand side of Figure 4F. In Figure 4D the distribution Inline graphic of the network is illustrated by sampling of the network for Inline graphic, with samples Inline graphic taken every millisecond. Each dot equals a sampled network state Inline graphic. In a biological interpretation the spike response of the freely evolving network reflects spontaneous activity, since no observations, i.e., no external input, was added to the system. Figure 4D shows that the spontaneous activity of this simple network of spiking neurons moves preferably through coherent network states for all possible orientations due to the chosen recurrent network connections (being positive for neurons with similar preferred orientation and negative otherwise). This can directly be seen from the rare occurrence of population vectors with small magnitude (vectors close to the “center”) in Figure 4D.

To study percepts elicited by ambiguous stimuli, where inputs like in Figure 4A are shown simultaneously to the left and right eye during a binocular rivalry experiment, we provided ambiguous input to the network. Two cells with preferred orientation Inline graphic and two cells with Inline graphic were clamped to Inline graphic. Additionally four neurons with Inline graphic resp. Inline graphic were muted by clamping to Inline graphic. This ambiguous input is incompatible with a coherent percept, as it corresponds to two orthogonal orientations presented at the same time. The resulting distribution over the state of the 209 remaining neurons is shown for a time span of Inline graphic of simulated biological time (with samples taken every millisecond) in Figure 4E. One clearly sees that the network spends most of the time in network states that correspond to one of the two simultaneously presented input orientations (Inline graphic and Inline graphic), and virtually no time on orientations in between. This implements a sampling process from a bimodal conditional distribution. The black line marks a Inline graphic trace of network states Inline graphic around a perceptual switch: The network remained in one mode of high probability – corresponding to one percept – for some period of time, and then quickly traversed the state space to another mode – corresponding to a different percept.

Three of the states Inline graphic around this perceptual switch (Inline graphic, Inline graphic and Inline graphic in Figure 4E) are explicitly shown in Figure 4F. Neurons Inline graphic that fired during the preceding interval of Inline graphic ms (marked in gray in Figure 4G) are drawn in the respective color of their preferred orientation. Inactive neurons are drawn in white, and clamped neurons are marked by a black dot (Inline graphic).

Figure 4G shows the action potentials of the Inline graphic non-clamped neurons during the same Inline graphic trace around the perceptual switch. One sees that the sampling process is expressed in this neural network model by a sparse, asynchronous and irregular spike response. It is worth mentioning that the average firing rate when sampling from the posterior distribution is only slightly higher than the average firing rate of spontaneous activity (Inline graphic and Inline graphic respectively), which is reminiscent of related experimental data [7]. Thus on the basis of the overall network activity it is indistinguishable whether the network carries out an inference task or freely samples from its prior distribution. It is furthermore notable, that a focus of the network activity on the two orientations that are given by the external input can be achieved in this model, in spite of the fact that only two of the Inline graphic neurons were clamped for each of them. This numerical relationship is reminiscent of standard data on the weak input from LGN to V1 that is provided in the brain [48], [49], and raises the question whether the proposed neural sampling model could provide a possible mechanism (under the modelling assumptions made above) for cortical processing of such numerically weak external inputs.

The distribution of the resulting dominance durations, i.e., the time between perceptual switches, for the previously described setup with ambiguous input is shown for a continuous run of Inline graphic in Figure 4C (a similar method as in [18] was used to measure dominance durations, see Methods). This distribution can be approximated quite well by a Gamma distribution, which also provides a good fit to experimental data (see the discussion in [18]). We expect that also other features of the more abstract MCMC model for biological vision of [17], [18], such as contextual biases and traveling waves, will emerge in larger and more detailed implementations of the MCMC approach through the proposed neural sampling method in networks of spiking neurons.

Discussion

We have presented a spiking neural network that samples from a given probability distribution via its inherent network dynamics. In particular the network is able to carry out probabilistic inference through sampling. The model, based on assumptions about the underlying probability distribution (formalized by the neural computability condition) as well as on certain assumptions regarding the underlying MCMC model, provides one possible neural implementation of the “inference-by-sampling paradigm” emerging in computational neuroscience.

During inference the observations (i.e., the variables which we wish to condition on) are modeled in this study by clamping the corresponding neurons by strong external input to the observed binary value. Units which receive no input or input with vanishing contrast (stimulus intensity) are treated as unobserved. Using this admittedly quite simplistic model of the input, we observed in simulations that our network model exhibits the following property: The onset of a sensory stimulus reduces the variability of the firing activity, which represents (after stimulus onset) a conditional distribution, rather than the prior distribution (see the difference between panels D and E of Figure 5. It is tempting to compare these results to the experimental finding of reduced firing rate variability after stimulus onset observed in several cortical areas [50]. We wish to point out however, that a consistent treatment of zero contrast stimuli requires more thorough modelling efforts (e.g., by explicitly adding a random variable for the stimulus intensity [35], [51]), which is not the focus of the presented work.

Figure 5. Firing statistics of neural sampling networks.

Figure 5

(A) Shown is the membrane potential histogram of a typical neuron during sampling. The data is that of neuron Inline graphic from the simulation shown in Figure 3 (the membrane potential and spike trace of Inline graphic are highlighted in Figure 3). (B) The plot shows the ISI distribution of a typical neuron (again Inline graphic from Figure 3) during sampling. The distribution is roughly gamma-shaped, reminiscent of experimentally observed ISI distributions. (C) A scatter plot of the coefficient of variation (CV) versus the average interspike interval (ISI) of each neuron taken from the simulation shown in Figure 3. The value of neuron Inline graphic from Figure 3 is marked by a cross. The simulated data is in accordance with experimentally observed data.

Virtually all high-level computational tasks that a brain has to solve can be formalized as optimization problems, that take into account a (possibly large) number of soft or hard constraints. In typical applications of probabilistic inference in science and engineering (see e.g. [52], [53]) such constraints are encoded in e.g., conditional probability tables or factors. In a biological setup they could possibly be encoded through the synaptic weights of a recurrent network of spiking neurons. The solution of such optimizations problems in a probabilistic framework via sampling, as implemented in our model, provides an alternative to deterministic solutions, as traditionally implemented in neural networks (see, e.g., [54] for the case of constraint satisfaction problems). Whereas an attractor neural network converges to one (possibly approximate) solution of the problem, a stochastic network may alternate between different approximate solutions and stay the longest at those approximate solutions that provide the best fit. This might be advantageous, as given more time a stochastic network can explore more of the state space and avoid shallow local minima. Responses to ambiguous sensory stimuli [44][47] might be interpreted as an optimization with soft constraints. The interpretation of human thinking as sampling process solving an inference task, recently proposed in cognitive science [28], [55], [56], further emphasizes that considering neural activity as an inferential process via sampling promises to be a fruitful approach.

Our approach builds on, and extends, previous work where recurrent networks of non-spiking stochastic neurons (commonly considered in artificial neural networks) were shown to be able to carry out probabilistic inference through Gibbs sampling [36]. In [57] a first extension of this approach to a network of recurrently connected spiking neurons had been presented. The dynamics of the recurrently connected spiking neurons are described as stepwise sampling from the posterior of a temporal Restricted Boltzmann Machine (tRBM) by introducing a clever interpretation of the temporal spike code as time varying parameters of a multivariate Gaussian distribution. Drawing one sample from the posterior of a RBM is, by construction, a trivial one-step task. In contrast to our model, the model of [57] does not produce multiple samples from a fixed posterior distribution, given the fixed input, but produces exactly one sample consisting of the temporal sequence of the hidden nodes, given a temporal input sequence. Similar temporal models, sometimes called Bayesian filtering, also underlie the important contributions of [58] and [32]. In [32] every single neuron is described as hidden Markov Model (HMM) with two states. Instead of drawing samples from the instantaneous posterior distribution using stochastic spikes, [32] presents a deterministic spike generation with the intention to convey the analog probability value rather than discrete samples. The approach presented here can be interpreted as a biologically more realistic version of Gibbs sampling for a specific class of probability distributions by taking into account a spike-based communication, finite duration PSPs and refractory mechanisms. Other implementations based on different distributions (e.g., directed graphical models) and different sampling methods (e.g., reversible MCMC methods) are of course conceivable and worth exploring.

In a computer experiment (see Figure 4, we used our proposed network to model aspects of biological vision as probabilistic inference along the lines of argumentation put forward in [16][18]. Our model was chosen to be quite simplistic, just to demonstrate that a number of experimental data on the dynamics of spontaneous activity [51], [59], [60] and binocular rivalry [44][47] can in principle be captured by this approach. The main point of the modelling study is to show that rather realistic neural dynamics can support computational functions rigorously formalized as inference via sampling.

We have also presented a model of spiking dynamics in continuous time that performs sampling from a given probability distribution. Although computer simulations of biological networks of neurons often actually use discrete time, it is desirable to also have a sound approach for understanding and describing the network sampling dynamics in continuous time, as the latter is arguable a natural framework for describing temporal processes in biology. Furthermore comparison to many existing continuous time neuron and network models of neurons is facilitated.

We have made various simplifying assumption regarding neural processes, e.g., simple symbolic postsynaptic potentials in the form of step-functions (reminiscent of plateau potentials caused by dendritic NMDA spikes [61]). More accurate models for neurons have to integrate a multitude of time constants that represent different temporal processes on the physical, molecular, and genetic level. Hence the open problem arises, to which extent this multitude of time constants and other complex dynamics can be integrated into theoretical models of neural sampling. We have gone one first step in this direction by showing that in computer simulations the two temporal processes that we have considered (refractory processes and postsynaptic potentials) can approximately be decoupled. Furthermore, we have presented simulation results suggesting that more realistic alpha-shaped, additive EPSPs are compatible with the functionality of the proposed network model.

Finally, we want to point out that the prospect of using networks of spiking neurons for probabilistic inference via sampling suggests new applications for energy-efficient spike-based and massively parallel electronic hardware that is currently under development [62], [63].

Methods

We first provide details and proofs for the neural sampling models, followed by details for the computer simulations. Then we investigate typical firing statistics of individual neurons during neural sampling and examine the approximation quality of neural sampling with different neuron and synapse models.

Mathematical details

Notation

To keep the derivations in a compact form, we introduce the following notations. We define the function Inline graphic of Inline graphic to be Inline graphic if Inline graphic and Inline graphic otherwise. Analogously we define Inline graphic. Let Inline graphic denote Kronecker’s Delta, i.e., Inline graphic if Inline graphic and Inline graphic whereas Inline graphic denotes Dirac’s Delta, i.e., Inline graphic. Furthermore Inline graphic is the indicator function of the set Inline graphic, i.e., Inline graphic if Inline graphic and Inline graphic if Inline graphic.

Details to neural sampling with absolute refractory period in discrete time

The following Lemmata 1 – 3 provide a proof of Theorem 1. For completeness we begin this paragraph with a recapitulation of the definitions stated in Results. We then identify some central properties of the joint probability distribution Inline graphic and proof that the proposed network samples from the desired invariant distribution.

For a given distribution Inline graphic over the binary variables Inline graphic with Inline graphic, the joint distribution over Inline graphic with Inline graphic is defined in the following way (see equation 7):

graphic file with name pcbi.1002211.e535.jpg

The assumption Inline graphic for all Inline graphic is required to show the irreducibility of the Markov chain, a prerequisite to ensure the uniqueness of the invariant distribution of the MCMC dynamics. Furthermore, for the given distribution Inline graphic we define the functions Inline graphic for Inline graphic which map Inline graphic:

graphic file with name pcbi.1002211.e542.jpg

Instead of Inline graphic we simply write Inline graphic in the following.

Lemma 1. The distribution Inline graphic has conditional distributions of the following form:

graphic file with name pcbi.1002211.e546.jpg

These results can also be written more compactly in the following form: Inline graphic and Inline graphic.

Proof. Here we use the fact that the logistic function Inline graphic is the inverse of the logit function, i.e., Inline graphic.

graphic file with name pcbi.1002211.e551.jpg

This also shows that Inline graphic is independent from Inline graphic given Inline graphic, i.e., Inline graphic. Now we show the second relation using Bayes’ rule:

graphic file with name pcbi.1002211.e556.jpg

In order to facilitate the verification of the next two Lemmata, we first restate the definition of the operators Inline graphic in a more concise way:

graphic file with name pcbi.1002211.e558.jpg

where Inline graphic.

Lemma 2. For all Inline graphic the operator Inline graphic leaves the conditional distribution Inline graphic invariant.

Proof. For sake of simplicity, denote Inline graphic for Inline graphic and Inline graphic. We have to show Inline graphic for Inline graphic.

First we show Inline graphic using Inline graphic and Inline graphic (which results from Lemma 1):

graphic file with name pcbi.1002211.e571.jpg

Here we used the definition of the logistic function Inline graphic and Inline graphic.

Now we show Inline graphic:

graphic file with name pcbi.1002211.e575.jpg

Here we used Inline graphic.

It is trivial to show Inline graphic for Inline graphic as Inline graphic. Here we used the facts that Inline graphic and Inline graphic for Inline graphic by definition.

Lemma 3. For all Inline graphic the operator Inline graphic leaves the distribution Inline graphic invariant.

Proof. We start from Lemma 2, which states that Inline graphic leaves the conditional distribution Inline graphic invariant:

graphic file with name pcbi.1002211.e588.jpg

Here we used the relations Inline graphic and Inline graphic as well as Inline graphic which directly follow from the definitions of Inline graphic and Inline graphic.

Finally, we can verify that the composed operator Inline graphic samples from the given distribution Inline graphic.

Theorem 1. Inline graphic is the unique invariant distribution of operator Inline graphic .

Proof. As all Inline graphic leave Inline graphic invariant, so does the concatenation Inline graphic. To ensure that Inline graphic is the unique invariant distribution, we have to show that Inline graphic is irreducible and aperiodic. Inline graphic is aperiodic as the transition probabilities Inline graphic and Inline graphic (this follows from the assumption Inline graphic made above).

The operator Inline graphic is also irreducible for the following reason. First we see that from any state Inline graphic in at most Inline graphic steps we can get to the zero-state Inline graphic (and stay there) with non-zero probability, as Inline graphic for Inline graphic and Inline graphic. Furthermore, it can be seen that any state Inline graphic can be reached from the zero-state Inline graphic in at most Inline graphic steps since Inline graphic for any value of Inline graphic. Hence every final state Inline graphic can be reached from every starting state Inline graphic in at most Inline graphic steps with non-vanishing probability.

Details to neural sampling with a relative refractory period in discrete time

We augment the neuron model with a relative refractory period described by a function Inline graphic. We first ensure existence of the corresponding function Inline graphic. Based on these functions we then introduce the transition operator Inline graphic of the Markov chain. This operator is shown to entail correct “local” computations.

Lemma 4. Let Inline graphic be a tuple of non-negative real numbers, with Inline graphic and at least one element Inline graphic . This defines the refractory function via Inline graphic . There exists a unique Inline graphic function Inline graphic with the following property Inline graphic :

graphic file with name pcbi.1002211.e632.jpg (15)

Furthermore, the function Inline graphic has the property:

graphic file with name pcbi.1002211.e634.jpg

Proof. Let Inline graphic; we know that Inline graphic. We define the function Inline graphic:

graphic file with name pcbi.1002211.e638.jpg

We can see that Inline graphic is a positive Inline graphic function on Inline graphic. Furthermore, Inline graphic is defined as a sum of functions of the form Inline graphic. Each factor Inline graphic is positive and strictly monotonous. Therefore, Inline graphic is strictly monotonous on Inline graphic with the limits:

graphic file with name pcbi.1002211.e647.jpg

Hence the equation Inline graphic has a unique solution for Inline graphic called Inline graphic for all Inline graphic. From applying the implicit function theorem to Inline graphic it follows that Inline graphic is Inline graphic.

From here on, with the letter Inline graphic we will denote the function characterized by the above Lemma for the given tuple Inline graphic (which denotes the chosen refractory function).

Definition 1. Define Inline graphic . The transition operator Inline graphic is defined in the following way for all Inline graphic:

graphic file with name pcbi.1002211.e660.jpg

with Inline graphic.

Lemma 5. For all Inline graphic the unique invariant distribution Inline graphic of the operator Inline graphic fulfills Inline graphic . This means, for a constant configuration Inline graphic , the operator Inline graphic produces samples Inline graphic from the correct conditional distribution Inline graphic .

Proof. We define:

graphic file with name pcbi.1002211.e670.jpg

where the function Inline graphic is defined as:

graphic file with name pcbi.1002211.e672.jpg

It is trivial to see that Inline graphic has the correct marginal distribution over Inline graphic:

graphic file with name pcbi.1002211.e675.jpg

We now show that Inline graphic is the unique invariant distribution of Inline graphic. Because of the definition of Inline graphic, we only have to show that Inline graphic is the unique invariant distribution of Inline graphic. We denote Inline graphic and Inline graphic, i.e., we have to show Inline graphic.

It is trivial to show Inline graphic for Inline graphic, as there is only one non-vanishing element of transition operator, namely Inline graphic:

graphic file with name pcbi.1002211.e687.jpg

Here we used Inline graphic for Inline graphic and the definition of Inline graphic.

Now we show Inline graphic starting from equation (15) and additionally using the relations Inline graphic and Inline graphic as well as the definition of Inline graphic. We define for the sake of simplicity Inline graphic:

graphic file with name pcbi.1002211.e696.jpg

We finally show Inline graphic, using the definition of Inline graphic:

graphic file with name pcbi.1002211.e699.jpg

The argument that the transition operator Inline graphic is aperiodic and irreducible is similar to the one presented in Lemma 1.

Details to neural sampling with an absolute refractory period in continuous time

In contrast to the discrete time model we define the state space of Inline graphic to be Inline graphic for Inline graphic, i.e., as the union of the positive real numbers and a small interval Inline graphic. We will define the sampling operator in such a way that after neuron Inline graphic was refractory for exactly its refractory period Inline graphic, its refractory variable Inline graphic is uniformly placed in the small interval Inline graphic, which represents now the resting state and replaces Inline graphic. This avoids point measures (Dirac’s Delta) on the value Inline graphic. This system is still exactly equivalent to the system discussed in the main paper, as all spike-transition probabilities of Inline graphic for Inline graphic are constant. Hence, it does not matter which values Inline graphic assumes with respect to the spike mechanism during its non-refractory period as long as Inline graphic.

Definition 2. For a given distribution Inline graphic over the binary variables Inline graphic with Inline graphic, we define a joint distribution over Inline graphic with Inline graphic in the following way:

graphic file with name pcbi.1002211.e720.jpg

where Inline graphic is the refractory resting state interval. In accordance with this definition we can also write Inline graphic .

Lemma 6. The distribution Inline graphic has the following marginal distribution:

graphic file with name pcbi.1002211.e724.jpg

where Inline graphic.

Definition 3. For Inline graphic and Inline graphic the operator Inline graphic is defined in the following way for a function Inline graphic:

graphic file with name pcbi.1002211.e730.jpg

where the functional Inline graphic is defined as the one-sided limit from above at 0:

graphic file with name pcbi.1002211.e732.jpg

The operator Inline graphic is defined in the following way for a probability distribution Inline graphic on Inline graphic :

graphic file with name pcbi.1002211.e736.jpg

where Inline graphic denotes the function Inline graphic of Inline graphic where Inline graphic is held constant and Inline graphic .

The transition operator Inline graphic defines the following Fokker-Planck equation for a time-dependent distribution Inline graphic:

graphic file with name pcbi.1002211.e744.jpg

The jump and drift functions Inline graphic and Inline graphic associated to the operator Inline graphic are given by:

graphic file with name pcbi.1002211.e748.jpg

Lemma 7. The operator Inline graphic leaves the conditional distribution Inline graphic invariant with Inline graphic , i.e.:

graphic file with name pcbi.1002211.e752.jpg

Proof. This is easy to proof using calculus and the relations Inline graphic and Inline graphic.

Lemma 8. Inline graphic is an invariant distribution of Inline graphic , i.e., it is a solution to the invariant Fokker-Planck equation:

graphic file with name pcbi.1002211.e757.jpg

Proof. We observe that Inline graphic for a constant Inline graphic (which is not a function of Inline graphic). Hence:

graphic file with name pcbi.1002211.e761.jpg

The Lemma follows then from the definition of Inline graphic.

Details to neural sampling with a relative refractory period in continuous time

As already assumed in the case of the absolute refractory sampler in continuous time, we define the state space of Inline graphic to be Inline graphic for Inline graphic.

Lemma 9. Let Inline graphic be a continuous, non-negative function Inline graphic with Inline graphic for Inline graphic . There exists a unique Inline graphic function Inline graphic with the following property Inline graphic :

graphic file with name pcbi.1002211.e773.jpg (16)

Proof. We define the function Inline graphic in the following way:

graphic file with name pcbi.1002211.e775.jpg

where Inline graphic. From Inline graphic we can follow that Inline graphic is non-negative. Inline graphic is differentiable with the derivative:

graphic file with name pcbi.1002211.e780.jpg

Hence Inline graphic is strictly monotonously increasing. Furthermore, the following relations hold:

graphic file with name pcbi.1002211.e782.jpg

Therefore the equation:

graphic file with name pcbi.1002211.e783.jpg

has exactly one solution Inline graphic with Inline graphic in Inline graphic. From applying the implicit function theorem to Inline graphic it follows that Inline graphic is Inline graphic.

Definition 4. For all Inline graphic and Inline graphic the operator Inline graphic is defined in the following way for a function Inline graphic:

graphic file with name pcbi.1002211.e794.jpg

The transition operator Inline graphic defines the following Fokker-Planck equation for a time-dependent distribution Inline graphic:

graphic file with name pcbi.1002211.e797.jpg

The jump and drift functions Inline graphic and Inline graphic associated to the operator Inline graphic are given by:

graphic file with name pcbi.1002211.e801.jpg

Lemma 10. For all Inline graphic the invariant distribution Inline graphic of the operator Inline graphic fulfills Inline graphic.

Proof. We define the distribution Inline graphic as:

graphic file with name pcbi.1002211.e807.jpg

where Inline graphic. By applying the operator Inline graphic to Inline graphic one can verify that Inline graphic holds using the definition of Inline graphic given in (16). Furthermore we can compute the ratio:

graphic file with name pcbi.1002211.e813.jpg

Details to the computer simulations

The simulation results shown in Figure 2, Figure 3 and Figure 4 used the biologically more realistic neuron model with the relative refractory mechanism. During all experiments the first second of simulated time was discarded as burn-in time. The full list of parameters defining the experimental setup is given in Table 1. All occurring joint probability distributions are Boltzmann distributions of the form given in equation (5). Example Python [64] scripts for neural sampling from Boltzmann distributions are available on request and will be provided on our webpage. The example code comprises networks with both absolute and relative refractory mechanism. It requires standard Python packages only and is readily executable.

Table 1. List of parameters of the computer simulations.

Description Variable Value Figure Comment
Simulation Time
Simulation step size Inline graphic Inline graphic 2–7 interpretation of an MCMC step
Burn-in time Inline graphic Inline graphic 2–7 before recording spikes
Simulation time Inline graphic Inline graphic 2
Inline graphic 3,5–7
Inline graphic 4 Inline graphic for Figure 3C
Network
Number of neurons Inline graphic 3 2 unconnected
40 3,5,6 randomly connected
217 4
Inline graphic 7 Inline graphic networks
Connection radius Inline graphic 2
Inline graphic 3,5–7
Inline graphic 4
Recurrent weights Inline graphic Inline graphic 3,5–7 from Gaussian distribution
Falling edge Inline graphic [20] ms 6,7 for realistic PSP shapes
Rising edge Inline graphic [3] ms 6,7
Scaling factor Inline graphic 20/17 6,7
Neuron Model
Number recovery steps Inline graphic Inline graphic 2–7 PSP duration Inline graphic
Refractory function Inline graphic Inline graphic 2Inline graphic normalized to Inline graphic,
Inline graphic 2–7 Inline graphic
Inline graphic 2Inline graphic,7
Excitability Inline graphic Inline graphic or Inline graphic 2 defines membrane potential Inline graphic
Inline graphic 3,5–7 from Gaussian distribution
Inline graphic 4 initial value
Tuning Function, Training and Inference ( Figure 4 )
Peakedness Inline graphic Inline graphic 4 measured: Inline graphic
Base sensitivity Inline graphic Inline graphic 4 measured: Inline graphic
Sensitivity contrast Inline graphic Inline graphic 4 measured: Inline graphic
Training samples Inline graphic Inline graphic 4
Decorrelation steps Inline graphic 4 for contrastive divergence
Learning rate Inline graphic Inline graphic 4
Number of neurons clamped on/off Inline graphic 4

Details to Figure 2: Neuron model with relative refractory mechanism

The three refractory functions Inline graphic of panel (B) as well as all other simulation parameters are listed in Table 1. Panel (C) shows the corresponding functions Inline graphic, which result from numerically solving equation (11). The spike patterns in panel (D) show the response of the neurons when the membrane potential is low (Inline graphic for Inline graphic) or high (Inline graphic for Inline graphic). These membrane potentials encode Inline graphic and Inline graphic, respectively according to (3) and (4). The binary state Inline graphic is indicated by gray shaded areas of duration Inline graphic after each spike.

Details to Figure 3: Sampling from a Boltzmann distribution by spiking neurons with relative refractory mechanism

We examined the spike response of a network of Inline graphic randomly connected neurons which sampled from a Boltzmann distribution. The excitabilities Inline graphic as well as the synaptic weights Inline graphic were drawn from Gaussian distributions (with diagonal elements Inline graphic). For the full list of parameters please refer to Table 1. One second of the arising spike pattern is shown in panel (A). The average firing rate of the network was Inline graphic. To highlight the internal dynamics of the neuron model, the values of the refractory function Inline graphic, the membrane potential Inline graphic and the instantaneous firing rate Inline graphic of neuron Inline graphic (indicated with red spikes) are shown in panel (B). Here, the instantaneous firing rate Inline graphic is defined for the discrete time Markov chain as

graphic file with name pcbi.1002211.e886.jpg (17)

As stated before, the neuron model with relative refractory mechanism Inline graphic does not entail the correct overall invariant distribution Inline graphic. To estimate the impact of this approximation on the joint network dynamics, we compared the distribution Inline graphic over five neurons (indicated by gray background in A) in the spiking network with the correct distribution obtained from Gibbs sampling. The probabilities were estimated from Inline graphic samples. A more quantitative analysis of the approximation quality of neural sampling with a relative refractory mechanism is provided below.

Details to Figure 4: Modeling perceptual multistability as probabilistic inference with neural sampling

We demonstrate probabilistic inference and learning in a network of orientation selective neurons. As a simple model we consider a network of Inline graphic neurons on a hexagonal grid as shown in panel (F). Any two neurons with distance Inline graphic were synaptically connected (neighboring units had distance Inline graphic). For the remaining parameters of the network and neuron model please refer to Table 1. Each neuron featured a Inline graphic-periodic tuning curve as depicted in panel (B):

graphic file with name pcbi.1002211.e895.jpg (18)

with base sensitivity Inline graphic, contrast Inline graphic, peakedness Inline graphic and preferred orientation Inline graphic. The preferred orientations Inline graphic of the neurons were chosen to cover the entire interval Inline graphic of possible orientations with equal spacing and were randomly assigned to the neurons.

For simplicity we did not incorporate the input dynamics in our probabilistic model, but rather trained the network directly like a fully visible Boltzmann machine. We used for this purpose a standard Boltzmann machine learning rule known as contrastive divergence [41], [65]. This learning rule requires posterior samples Inline graphic, i.e., network states under the influence of the present input, and approximate prior samples Inline graphic, which reflect the probability distribution of the network in the absence of stimuli. The update rules for synaptic weights and neuronal excitabilities read:

graphic file with name pcbi.1002211.e904.jpg (19)

While more elaborate policies can speed up convergence, we simply used a global learning rate Inline graphic which was constant in time. The values of Inline graphic and Inline graphic were initialized at Inline graphic. We generated binary training patterns in the following way:

  1. A global orientation Inline graphic was drawn uniformly from Inline graphic,

  2. each neuron was independently set to be active with probability Inline graphic,

  3. the resulting network state Inline graphic was taken as posterior sample.

To obtain an approximate prior sample Inline graphic we let the network run for a short time freely starting from Inline graphic. The variables Inline graphic were also assumed to be observed with Inline graphic iid. uniformly in Inline graphic if Inline graphic and Inline graphic otherwise. After evolving freely for Inline graphic time steps, the resulting network state Inline graphic was taken as approximate prior sample and Inline graphic and Inline graphic were updated according to (19). This process was repeated Inline graphic times. As a result, neurons with similar preferred orientations featured excitatory synaptic connections (Inline graphic  =  mean Inline graphic standard deviation of weight distribution), those with dissimilar orientations maintained inhibitory synapses (Inline graphic). Here, preferred orientations Inline graphic and Inline graphic are defined as similar if Inline graphic, otherwise they are dissimilar. Neuronal biases converged to Inline graphic.

We illustrate the learned prior distribution Inline graphic of the network through sampled states when the network evolved freely. As seen in panel (D), the population vector – a 2-dimensional projection of the high dimensional network state – typically reflected an arbitrary, yet coherent, orientation (for the definition of the population vector see below). Each dot represents a sampled network state Inline graphic.

To apply an ambiguous cue, we clamped Inline graphic out of Inline graphic neurons: Two units with Inline graphic and two with Inline graphic were set active, two units with Inline graphic and two with Inline graphic were set inactive. This led to a bimodal posterior distribution as shown in panel (E). The sampling network represented this distribution by encoding either global perception separately: The trace of network states Inline graphic roamed in one mode for multiple steps before quickly crossing the state space towards the opposite percept.

We define the population vector Inline graphic of a network state Inline graphic as a function of the preferred orientations of all active units:

graphic file with name pcbi.1002211.e943.jpg (20)

This definition of Inline graphic is not based on the preferred orientations Inline graphic which are used for generating external input to the network from a given stimulus with orientation Inline graphic. It is rather based on the preferred orientations Inline graphic measured from the network response. We used population vector decoding based on the measured values Inline graphic, as they are conceptually closer to experimentally measurable preferred orientations, and this decoding hence does not require knowledge of the (unobservable) Inline graphic. For every neuron Inline graphic the preferred orientation Inline graphic was measured in the following way. We estimated a tuning curve Inline graphic by a van-Mises fit (of the form (18)) to data from stimulation trials in which neuron Inline graphic was not clamped, i.e., where Inline graphic was only stimulated by recurrent input (feedforward input was modeled by clamping 8 out of 217 neurons as a function of stimulus orientation Inline graphic as before). Due to the structured recurrent weights, the experimentally measured tuning curves Inline graphic were found to be reasonably close to the tuning curves Inline graphic used for external stimulation. Inline graphic was set to the preferred orientation of Inline graphic (localization parameter of the van-Mises fit). The measured values Inline graphic turned out to be consistent with the preferred orientations Inline graphic (Inline graphic averaged over all Inline graphic neurons). The mean and standard deviation of the remaining parameter values Inline graphic, Inline graphic and Inline graphic of the fitted tuning curves Inline graphic are listed in Table 1 next to the ones used for stimulation.

The population vector Inline graphic was defined in (20) with the argument Inline graphic (instead of Inline graphic) as orthogonal orientations should cancel each other and neighborhood relations should be respected. For example neurons with Inline graphic and Inline graphic contribute similarly to the population vector for small Inline graphic. But counter to intuition the population vector of a state Inline graphic with dominant orientation Inline graphic will point into direction Inline graphic. For visualization in panel (D) and (E) we therefore rescaled the population vector: If Inline graphic in polar coordinates, then the dot is located at Inline graphic in accord with intuition. The black semicircles equal Inline graphic.

The population vector Inline graphic was also used for measuring the dominance durations shown in panel (C). To this Inline graphic was divided into Inline graphic areas: (a) Inline graphic, (b) Inline graphic, (c) Inline graphic. We detected a perceptual switch when the network state entered area (a) or (c) while the previous perception was (c) or (a), respectively.

In panel (F) neurons Inline graphic with Inline graphic are plotted with their preferred orientation color code, inactive neurons are displayed in white. Cells marked by a dot (Inline graphic) were part of the observed variables Inline graphic. The three network states correspond to Inline graphic with Inline graphic, Inline graphic and Inline graphic in the spike pattern in panel (G). The spike pattern shows the response of the freely evolving units around a perceptual switch during sampling from the posterior distribution. The corresponding trace of the population vector is drawn as black line in panel (E). The width of the light-gray shaded areas in the spike pattern equals the PSP duration Inline graphic, i.e., neurons that spiked in these intervals were active in the corresponding state in (F).

Firing statistics of neural sampling networks

In previous sections it was shown that a spiking neural network can draw samples from a given joint distribution which is in a well-defined class of probability distributions (see the neural computability condition (4)). Here, we examine some statistics of individual neurons in a sampling network which are commonly used to analyze experimental data from recordings. The spike trains and membrane potential data are taken from the simulation presented in Figure 3.

Figure 5A,B exemplarily show the distribution of the membrane potential Inline graphic and the interspike interval (ISI) histogram of a single neuron, namely neuron Inline graphic which was already considered in Figure 3B. The responses of other neurons yield qualitatively similar statistics. The bell-shaped distribution of the membrane potential is commonly observed in neurons embedded in an active network [66]. The ISI histogram reflects the reduced spiking probability immediately after an action potential due the refractory mechanism. Interspike intervals larger than the refractory time constant Inline graphic roughly follow an exponential distribution. Similar ISI distributions were observed during in-vivo recordings in awake, behaving monkeys [67].

Figure 5C shows a scatterplot of the coefficient of variation (CV) of the ISIs versus the average ISI for each neuron in the network. The neurons exhibited a variety of average firing rates between Inline graphic and Inline graphic. Most of the neurons responded in a highly irregular manner with a CV Inline graphic. Neurons with high firing rates had a slightly lower CV due to the increased influence of the refractory mechanism The dashed line marks the CV of a Poisson process, i.e., a memoryless spiking behavior. The CV of neuron Inline graphic is marked by a cross. The structure of this plot resembles, e.g., data from recordings in behaving macaque monkeys [68] (but note the lower average firing rate).

Approximation quality of neural sampling with different neuron and synapse models

The theory of the neuron model with absolute refractory mechanism guarantees sampling form the correct distribution. In contrast, the theory for the neuron model with a relative refractory mechanism only shows that the sampling process is “locally correct”, i.e., that it would yield correct conditional distributions Inline graphic for each individual neuron if the state of the remaining network Inline graphic stayed constant. Therefore, the stationary distribution of the sampling process with relative refractory mechanism only provides an approximation to the target distribution. In the following we examine the approximation quality and robustness of sampling networks with different refractory mechanisms for target Boltzmann distributions with parameters randomly drawn from different distributions. Furthermore, we investigate the effect of additive PSP shapes with more realistic time courses.

We generated target Boltzmann distributions with randomly drawn weights Inline graphic and biases (excitabilities) Inline graphic and computed the similarity between these reference distributions and the corresponding neural sampling approximations. The setup of these simulations is the same as for the simulation presented in Figure 3. As we aimed to compare the distribution Inline graphic sampled by the network with the exact Boltzmann distribution Inline graphic, we reduced the number of neurons per network to Inline graphic. This resulted in a state space of Inline graphic possible network states Inline graphic for which the normalization constant for the target Boltzmann distribution could be computed exactly. The weight matrix Inline graphic was constraint to be symmetric with vanishing diagonal. Off-diagonal elements were drawn from zero-mean normal distributions with three different standard deviations Inline graphic, Inline graphic and Inline graphic, whereas the Inline graphic were sampled from the same distribution as in Figure 3. For every value of the hyperparameter Inline graphic we generated 100 random distributions. For Boltzmann distributions with small weights (Inline graphic), the RVs are nearly independent, whereas distributions with intermediate weights (Inline graphic) show substantial statistical dependencies between RVs. For very large weights (Inline graphic), the probability mass of the distributions is concentrated on very few states (usually 90% on less than 10 out of the Inline graphic states). Hence, the range of the hyperparameter Inline graphic considered here covers a range a very different distributions.

The approximation quality of the sampled distribution was measured in terms of the Kullback-Leibler divergence between the target distribution Inline graphic and the neural approximation Inline graphic

graphic file with name pcbi.1002211.e1024.jpg (21)

We estimated Inline graphic from Inline graphic samples for each simulation trial using a Laplace estimator, i.e., we added a priori Inline graphic to the number of occurrences of each state Inline graphic.

Table 2 shows the means and the standard deviations of the Kullback-Leibler divergences between the target Boltzmann distributions and the estimated approximations stemming from neural sampling networks with three different neuron and synapse models: the exact model with absolute refractory mechanism and two models with different relative refractory mechanisms shown in the bottom and middle row in Figure 2B. Additionally, as a reference, we provide the (analytically calculated) Kullback-Leibler divergences for fully factorized distributions, i.e., Inline graphic with correct marginals Inline graphic but independent variables Inline graphic for Inline graphic.

Table 2. Approximation quality of networks with different refractory mechanisms.

Inline graphic Absolute refractory Rel. late recovery Rel. moderate recovery Prod. of marginals
0.03 Inline graphic Inline graphic Inline graphic Inline graphic
0.3 Inline graphic Inline graphic Inline graphic Inline graphic
3.0 Inline graphic Inline graphic Inline graphic Inline graphic

Mean and standard deviation of the Kullback-Leibler divergence Inline graphic between reference Boltzmann distributions Inline graphic and neural sampling approximations Inline graphic for three different neuron models (corresponding to columns) and three different values for the reference distribution hyperparameter Inline graphic (corresponding to rows). The parameter Inline graphic controls the standard deviation of the weights of the reference distributions Inline graphic. In case of very strong synaptic interactions (leading to sharply peaked distributions, Inline graphic) the approximation quality of the spiking network degrades, if the neurons feature a relative refractory mechanism. The data was computed from 100 randomly generated Boltzmann distributions and their neural approximations for each value of Inline graphic.

The absolute refractory model provides the best results as we expected due to the theoretical guarantee to sample from the correct distribution (the non-zero Kullback-Leibler divergence is caused by the estimation from a finite number of samples). The models with relative refractory mechanism provide faithful approximations for all values of the hyperparameter Inline graphic considered here. These relative refractory models are characterized by the theory to be “locally correct” and turn out to be much more accurate approximations than fully factorized distributions if substantial statistical dependencies between the RVs are present (i.e., Inline graphic, Inline graphic). As expected, a late recovery of the refractory function Inline graphic is beneficial for the approximation quality of the model as it is closer to an absolute refractory mechanism. Figure 6 shows the full histograms of the Kullback-Leibler divergences for the intermediate weights group (Inline graphic). Systematic deviations due to the relative refractory mechanism are on the same order as the effect of estimating from finite samples (as can be seen, e.g., from a comparison with the absolute refractory model which has 0 systematic error). For completeness, we mention that the divergences of the fully factorized distributions of Inline graphic out of the Inline graphic networks with Inline graphic are not shown in the plot.

Figure 6. Comparison of neural sampling with different neuron and synapse models.

Figure 6

The figure shows a histogram of the Kullback-Leibler divergence between Inline graphic different Boltzmann distributions over K = 10 variables (with parameters randomly drawn, see setup of Figure 3) and approximations stemming from different neural sampling networks. Networks with absolute refractory mechanism provide the best approximation (as expected from theoretical guarantees). Networks consisting of neurons with relative refractory mechanisms, with only “locally” correct sampling, also provide a close fit to the true distribution (see inset) compared to a fully factorized approximation (assuming correct marginals and independent variables). Furthermore, it can be seen that sampling networks with more realistic, alpha-shaped, additive PSPs still fit the true distribution reasonably well.

The theorems presented in this article assumed renewed (i.e., non-additive), rectangular PSPs. In the following we examine the effect of additive PSPs with more realistic time courses. We define additive, alpha-shaped PSPs in the following way. The influence Inline graphic of each presynaptic neuron Inline graphic on the postsynaptic membrane potential Inline graphic is modeled by convolving the input spikes with a kernel Inline graphic:

graphic file with name pcbi.1002211.e1067.jpg (22)

where Inline graphic for Inline graphic and Inline graphic for Inline graphic, and Inline graphic for Inline graphic are the spike times of the presynaptic neuron Inline graphic. The time constant governing the rising edge of the PSPs was set to Inline graphic. The time constant controlling the falling edge was chosen equal to the duration of rectangular PSPs, Inline graphic. The scaling parameter Inline graphic was set such that the time integral over a single PSP matches the time integral over the theoretically optimal rectangular PSP, i.e., Inline graphic. These parameters display a simple and reasonable choice for the purpose of this study (an optimization of Inline graphic, Inline graphic and Inline graphic is likely to yield an improved approximation quality). Figure 7A shows the resulting shape of the non-rectangular PSP. Furthermore the time course of the function Inline graphic caused by a single spike of neuron Inline graphic is shown in order to illustrate that the time constants of Inline graphic and of a PSP are closely related due to the assumption Inline graphic made above. Preliminary and non-exhaustive simulations seem to suggest that the choice Inline graphic yields better approximation quality than setting Inline graphic or Inline graphic; however it is very well possible that a mismatch between Inline graphic and Inline graphic can be compensated for by adapting other parameters, e.g., the PSP magnitude or a specific choice of the refractory function Inline graphic. Figure 7B shows the results of an experiment, similar to the one presented in Figure 3C , with additive, alpha-shaped PSPs and relative refractory mechanism. While differences to Gibbs sampling results are visible, the spiking network still captures dependencies between the binary random variables quite well.

Figure 7. Sampling from a Boltzmann distribution with more realistic PSP shapes.

Figure 7

(A) The upper panel shows the shape of a single PSP elicited at time Inline graphic. The lower panel shows the time course of the refractory function Inline graphic caused by a single spike of neuron Inline graphic at Inline graphic. The grey-shaded area of length Inline graphic indicates the interval of neuron Inline graphic being active (i.e., Inline graphic) due to a single spike of neuron Inline graphic at time Inline graphic. (B) Shown is the probability distribution of 5 out of 40 neurons. The plot is similar to Figure 3C, however it is generated with a sampling network that features alpha-shaped, additive PSPs. It can be seen that the network still produces a reasonable approximation to the true Boltzmann distribution (determined by Gibbs sampling).

For a quantitative analysis of the approximation quality, we repeated the experiment of Figure 6 with additive, alpha-shaped PSPs (shown as green bars). The Kullback-Leibler divergence Inline graphic to the true distribution is clearly higher compared to the case of renewed, rectangular PSPs. Still networks with this more realistic synapse model account for dependencies between the random variables Inline graphic and yield a better approximation of Inline graphic than fully factorized distributions.

Acknowledgments

We would like to thank Mihai Petrovici, Robert Legenstein and Samuel Gershman for helpful discussions.

Footnotes

The authors have declared that no competing interests exist.

This paper was written under partial support by the European Union project #FP7-237955 (FACETS-ITN), project #FP7-269921 (BrainScaleS), project #FP7-216593 (SECO), project #FP7-506778 (PASCAL2) and project #FP7-243914 (BRAIN-I-NETS). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

References

  • 1.Rolls ET, Deco G. Oxford University Press; 2010. The Noisy Brain: Stochastic Dynamics as a Principle of Brain Function. [DOI] [PubMed] [Google Scholar]
  • 2.Cannon R, O’Donnell C, Nolan M. Stochastic ion channel gating in dendritic neurons: morphology dependence and probabilistic synaptic activation of dendritic spikes. PLoS Comput Biol. 2010;6:e1000886. doi: 10.1371/journal.pcbi.1000886. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Flight M. Synaptic transmission: On the probability of release. Nat Rev Neurosci. 2010;9:736–737. [Google Scholar]
  • 4.Azouz R, Gray CM. Cellular mechanisms contributing to response variability of cortical neurons in vivo. J Neurosci. 1999;19:2209–2223. doi: 10.1523/JNEUROSCI.19-06-02209.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.GerstnerW, KistlerWM . Cambridge: Cambridge University Press; 2002. Spiking Neuron Models. [Google Scholar]
  • 6.Brascamp JW, van Ee R, Noest AJ, Jacobs RHAH, van den Berg AV. The time course of binocular rivalry reveals a fundamental role of noise. J Vis. 2006;6:1244–1256. doi: 10.1167/6.11.8. [DOI] [PubMed] [Google Scholar]
  • 7.Fiser J, Chiu C, Weliky M. Small modulation of ongoing cortical dynamics by sensory input during natural vision. Nature. 2004;431:573–583. doi: 10.1038/nature02907. [DOI] [PubMed] [Google Scholar]
  • 8.Ringach DL. Spontaneous and driven cortical activity: implications for computation. Curr Opin Neurobiol. 2009;19:1–6. doi: 10.1016/j.conb.2009.07.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Geman S, Geman D. Stochastic relaxation, gibbs distributions, and the bayesian restoration of images. IEEE Trans Pattern Anal Mach Intell. 1984;6:721–741. doi: 10.1109/tpami.1984.4767596. [DOI] [PubMed] [Google Scholar]
  • 10.Rao RPN, Olshausen BA, Lewicki MS. MIT Press; 2002. Probabilistic Models of the Brain. [Google Scholar]
  • 11.Doya K, Ishii S, Pouget A, Rao RPN. MIT-Press; 2007. Bayesian Brain: Probabilistic Approaches to Neural Coding. [Google Scholar]
  • 12.Körding KP, Wolpert DM. Bayesian integration in sensorimotor learning. Nature. 2004;427:244–247. doi: 10.1038/nature02169. [DOI] [PubMed] [Google Scholar]
  • 13.Kersten D, Mamassian P, Yuille A. Object perception as Bayesian inference. Annu Rev Psychol. 2004;55:271–304. doi: 10.1146/annurev.psych.55.090902.142005. [DOI] [PubMed] [Google Scholar]
  • 14.Gopnik A, Tenenbaum JB. Bayesian special section: Introduction; Bayesian networks, Bayesian learning and cognitive development. Dev Sci. 2007;10:281–287. doi: 10.1111/j.1467-7687.2007.00584.x. [DOI] [PubMed] [Google Scholar]
  • 15.Lee TS, Mumford D. Hierarchical Bayesian inference in the visual cortex. J Opt Soc Am A. 2003;20:1434–1448. doi: 10.1364/josaa.20.001434. [DOI] [PubMed] [Google Scholar]
  • 16.Hoyer P, Hyvärinen A. Proceedings of the 16th Conference on Advances in Neural Information Processing Systems; December 2002. Vancouver, Canada: 2003. Interpreting neural response variability as Monte Carlo sampling of the posterior. NIPS 2002. [Google Scholar]
  • 17.Sundareswara R, Schrater PR. Perceptual multistability predicted by search model for bayesian decisions. J Vis. 2008;8:1–19. doi: 10.1167/8.5.12. [DOI] [PubMed] [Google Scholar]
  • 18.Gershman SJ, Vul E, Tenenbaum J. Proceedings of the 22nd Conference on Advances in Neural Information Processing Systems; December 2008. Vancouver, Canada: 2009. Perceptual multistability as Markov chain Monte Carlo inference. NIPS 2008. [Google Scholar]
  • 19.Griffiths TL, Kemp C, Tenenbaum JB. Bayesian models of cognition. In: Sun R, editor. Handbook of Computational Cognitive Modeling. Cambridge University Press; 2008. pp. 59–100. [Google Scholar]
  • 20.Yang T, Shadlen MN. Probabilistic reasoning by neurons. Nature. 2007;447:1075–1080. doi: 10.1038/nature05852. [DOI] [PubMed] [Google Scholar]
  • 21.Gold JI, Shadlen MN. The neural basis of decision making. Annu Rev Neurosci. 2007;30:535–574. doi: 10.1146/annurev.neuro.29.051605.113038. [DOI] [PubMed] [Google Scholar]
  • 22.Sadaghiani S, Hesselmann G, Friston KJ, Kleinschmidt A. The relation of ongoing brain activity, evoked neural responses, and cognition. Front Syst Neurosci 4: Artikel. 2010;20 doi: 10.3389/fnsys.2010.00020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Pearl J. Morgan Kaufmann; 1988. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. [Google Scholar]
  • 24.Friston KJ, Daunizeau J, Kilner J, Kiebel SJ. Action and behavior: a free-energy formulation. Biol Cybern. 2010;102:227–260. doi: 10.1007/s00422-010-0364-z. [DOI] [PubMed] [Google Scholar]
  • 25.Toussaint M. Probabilistic inference as a model of planned behavior. Künstliche Intelligenz. 2009;3:23–29. [Google Scholar]
  • 26.Toussaint M, Goerick C. A Bayesian view on motor control and planning. In: Sigaud O, Peters J, editors. From motor to interaction learning in robots. Studies in Computational Intelligence. Springer; 2010. pp. 227–252. [Google Scholar]
  • 27.Tenenbaum JB, Griffiths TL, Kemp C. Theory-based bayesian models of inductive learning and reasoning. Trends Cogn Sci. 2006;10:309–318. doi: 10.1016/j.tics.2006.05.009. [DOI] [PubMed] [Google Scholar]
  • 28.Griffiths TL, Tenenbaum JB. Optimal predictions in everyday cognition. Psychol Sci. 2006;17:767–773. doi: 10.1111/j.1467-9280.2006.01780.x. [DOI] [PubMed] [Google Scholar]
  • 29.Oaksford M, Chater N. Oxford University Press; 2007. Bayesian Rationality: The Probabilistic Approach to Human Reasoning. [DOI] [PubMed] [Google Scholar]
  • 30.Rao RPN. Neural models of Bayesian belief propagation. In: Doya K, Ishii S, Pouget A, Rao RPN, editors. Bayesian Brain. Cambridge, MA: MIT-Press; 2007. pp. 239–267. [Google Scholar]
  • 31.Steimer A, Maass W, Douglas R. Belief-propagation in networks of spiking neurons. Neural Comput. 2009;21:2502–2523. doi: 10.1162/neco.2009.08-08-837. [DOI] [PubMed] [Google Scholar]
  • 32.Deneve S. Bayesian spiking neurons I: Inference. Neural Comput. 2008;20:91–117. doi: 10.1162/neco.2008.20.1.91. [DOI] [PubMed] [Google Scholar]
  • 33.Litvak S, Ullman S. Cortical circuitry implementing graphical models. Neural Comput. 2009;21:1–47. doi: 10.1162/neco.2009.05-08-783. [DOI] [PubMed] [Google Scholar]
  • 34.Sahani M, Dayan P. Doubly distributional population codes: Simultaneous representation of uncertainty and multiplicity. Neural Comput. 2003;15:2255–2279. doi: 10.1162/089976603322362356. [DOI] [PubMed] [Google Scholar]
  • 35.Fiser J, Berkes P, Orbn G, Lengyel M. Statistically optimal perception and learning: from behavior to neural representations. Trends Cogn Sci. 2010;14:119–130. doi: 10.1016/j.tics.2010.01.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Ackley DH, Hinton GE, Sejnowski TJ. A learning algorithm for boltzmann machines. Cogn Sci. 1985;9:147–169. [Google Scholar]
  • 37.Hinton GE, Osindero S, Teh YW. A fast learning algorithm for deep belief nets. Neural Comput. 2006;18:1527–1554. doi: 10.1162/neco.2006.18.7.1527. [DOI] [PubMed] [Google Scholar]
  • 38.Andrieu C, Freitas ND, Doucet A, Jordan MI. An introduction to MCMC for machine learning. Mach Learn. 2003;50:5–43. [Google Scholar]
  • 39.Grimmett GR, Stirzaker DR. Oxford University Press, 3rd edition; 2001. Probability and Random Processes. [Google Scholar]
  • 40.Nessler B, Pfeiffer M, MaassW . Proceedings of the 21th Conference on Advances in Neural Information Processing Systems; December 2008. Vancouver, Canada: 2009. Hebbian learning of Bayes optimal decisions. NIPS 2008. [Google Scholar]
  • 41.Hinton GE. Learning to represent visual input. Philos Trans R Soc Lond B Biol Sci. 2010;365:177–184. doi: 10.1098/rstb.2009.0200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Pillow JW, Shlens J, Paninski L, Sher A, Litke AM, et al. Spatio-temporal correlations and visual signalling in a complete neuronal population. Nature. 2008;454:995–999. doi: 10.1038/nature07140. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Gardiner C. 3rd ed. Springer; 2004. Handbook of Stochastic Methods. [Google Scholar]
  • 44.Leopold DA, Wilke M, Maier A, Logothetis NK. Stable perception of visually ambiguous patterns. Nat Neurosci. 2002;5:605–609. doi: 10.1038/nn0602-851. [DOI] [PubMed] [Google Scholar]
  • 45.Blake R, Logothetis NK. Visual competition. Nat Rev Neurosci. 2002;3:13–21. doi: 10.1038/nrn701. [DOI] [PubMed] [Google Scholar]
  • 46.Alais D, Blake R. MIT Press; 2005. Binocular Rivalry. [Google Scholar]
  • 47.Bartels A, Logothetis NK. Binocular rivalry: a time dependence of eye and stimulus contributions. J Vis. 2010;10:3. doi: 10.1167/10.12.3. [DOI] [PubMed] [Google Scholar]
  • 48.Binzegger T, Douglas RJ, Martin KA. A quantitative map of the circuit of cat primary visual cortex. J Neurosci. 2004;24:8441–8453. doi: 10.1523/JNEUROSCI.1400-04.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Binzegger T, Douglas R, Martin K. Topology and dynamics of the canonical circuit of cat V1. Neural Netw. 2009;22:1071–1078. doi: 10.1016/j.neunet.2009.07.011. [DOI] [PubMed] [Google Scholar]
  • 50.Churchland MM, Yu BM, Cunningham JP, Sugrue LP, Cohen MR, et al. Stimulus onset quenches neural variability: a widespread cortical phenomenon. Nat Neurosci. 2010;13:369–378. doi: 10.1038/nn.2501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.Berkes P, Orbán G, Lengyel M, Fiser J. Spontaneous cortical activity reveals hallmarks of an optimal internal model of the environment. Science. 2011;331:83. doi: 10.1126/science.1195870. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Bishop CM. New York: Springer; 2006. Pattern Recognition and Machine Learning. [Google Scholar]
  • 53.Koller D, Friedman N. MIT Press; 2009. Probabilistic Graphical Models: Principles and Techniques. [Google Scholar]
  • 54.Hopfield JJ, Tank DW. “Neural” computation of decisions in optimization problems. Biol Cybern. 1985;52:141–152. doi: 10.1007/BF00339943. [DOI] [PubMed] [Google Scholar]
  • 55.Vul E, Pashler H. Measuring the crowd within: Probabilistic representations within individuals. Psychol Sci. 2008;19:645–647. doi: 10.1111/j.1467-9280.2008.02136.x. [DOI] [PubMed] [Google Scholar]
  • 56.Denison S, Bonawitz E, Gopnik A, Griffiths T. Proceedings of the 32nd Annual Conference of the Cognitive Science Society; 29 July - 1 August 2009. Amsterdam, Netherlands: 2009. Preschoolers sample from probability distributions. CogSci 2009. [Google Scholar]
  • 57.Hinton G, Brown A. Proceedings of the 13th Conference on Advances in Neural Information Processing Systems; December 1999. Vancouver, Canada: NIPS 1999; 2000. Spiking Boltzmann machines. [Google Scholar]
  • 58.Zemel R, Huys QJM, Natarajan R, Dayan P. Proceedings of the 17th Conference on Advances in Neural Information Processing Systems; December 2004. Vancouver, Canada: NIPS 2004; 2005. Probabilistic computation in spiking populations. [Google Scholar]
  • 59.Kenet T, Bibitchkov D, Tsodyks M, Grinvald A, Arieli A. Spontaneously emerging cortical representations of visual attributes. Nature. 2003;425:954–956. doi: 10.1038/nature02078. [DOI] [PubMed] [Google Scholar]
  • 60.Fox MD, Raichle ME. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci. 2007;8:700–711. doi: 10.1038/nrn2201. [DOI] [PubMed] [Google Scholar]
  • 61.Antic SD, ZhouWL, Moore AR, Short SM, Ikonomu KD. The decade of the dendritic NMDA spike. J Neurosci Res. 2010;88:2991–3001. doi: 10.1002/jnr.22444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62.Merolla P, Arthur J, Shi BE, Boahen K. Expandable networks for neuromorphic chips. IEEE Trans Circuits Syst I Regul Pap. 2007;54:301–311. [Google Scholar]
  • 63.Bruederle D, Bill J, Kaplan B, Kremkow J, Meier K, et al. Proceedings of the IEEE International Symposium on Circuits and Systems; 30May - 2 June 2010. Paris, France: ISCAS 2010; 2010. Live demonstration: Simulatorlike exploration of cortical network architectures with a mixed-signal VLSI system. [Google Scholar]
  • 64.Python 2011. The python language reference. Available: http://docs.python.org/reference/.
  • 65.Hinton GE. Training products of experts by minimizing contrastive divergence. Neural Comput. 2002;14:1771–1800. doi: 10.1162/089976602760128018. [DOI] [PubMed] [Google Scholar]
  • 66.Pospischil M, Piwkowska Z, Bal T, Destexhe A. Characterizing neuronal activity by describing the membrane potential as a stochastic process. J Physiol Paris. 2009;103:98–106. doi: 10.1016/j.jphysparis.2009.05.010. [DOI] [PubMed] [Google Scholar]
  • 67.Shinomoto S, Kim H, Shimokawa T, Matsuno N, Funahashi S, et al. Relating neuronal firing patterns to functional differentiation of cerebral cortex. PLoS Comput Biol. 2009;5:e1000433. doi: 10.1371/journal.pcbi.1000433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68.Softky W, Koch C. The highly irregular firing of cortical cells is inconsistent with temporal integration of random epsps. J Neurosci. 1993;13:334–350. doi: 10.1523/JNEUROSCI.13-01-00334.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from PLoS Computational Biology are provided here courtesy of PLOS

RESOURCES