Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1982 Sep 11;10(17):5319–5332. doi: 10.1093/nar/10.17.5319

DNA fragment conformations IV - Helix-coil transition and conformation of d-CCATGG in aqueous solution by 1H-NMR spectroscopy.

S Tran-Dinh, J M Neumann, T Huynh-Dinh, P Allard, J Y Lallemand, J Igolen
PMCID: PMC320874  PMID: 7145703

Abstract

The helix-coil transition and conformation of d-CCATGG were investigated using 1H-NMR spectroscopy at various frequencies (90, 276, 400 MHz). The changes in the chemical shifts and linewidths of imino protons between 5 degrees and 35 degrees C show that the d-CCATGG fraying process consists of two stages: the external dC.dG base pairs open at first, th internal dC.dG and central dA.dT base pairs then open simultaneously at higher temperatures similar to the case of d-ACATGT. The midpoint temperatures, the helix and coil proportions and the dissociation constant were determined from the sigma = f(t degree) curves of the base and sugar protons. The results indicate that the midpoint temperature increases with the number of the dG.dC base pair in a given size sequence, while the dissociation enthalpy appears to be independent. The difference between the T1 value of a base proton of the external and internal residues of the same nature is found to be a good criterion for base proton assignment. The high predominance of the S conformation for all residues shows that d-CCATGG duplexes adopt the B-helical conformation.

Full text

PDF
5319

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arter D. B., Walker G. C., Uhlenbeck O. C., Schmidt P. G. PMR or the self-complementary oligoribonucleotide CpCpGpG. Biochem Biophys Res Commun. 1974 Dec 23;61(4):1089–1094. doi: 10.1016/s0006-291x(74)80395-5. [DOI] [PubMed] [Google Scholar]
  2. Borer P. N., Kan L. S., Ts'o P. O. Conformation and interaction of short nucleic acid double-stranded helices. I. Proton magnetic resonance studies on the nonexchangeable protons of ribosyl ApApGpCpUpU. Biochemistry. 1975 Nov 4;14(22):4847–4863. doi: 10.1021/bi00693a012. [DOI] [PubMed] [Google Scholar]
  3. Early T. A., Kearns D. R., Hillen W., Wells R. D. A 300 MHz and 600 MHz proton NMR study of a 12 base pair restriction fragment: investigation of structure by relaxation measurements. Nucleic Acids Res. 1980 Dec 11;8(23):5795–5812. doi: 10.1093/nar/8.23.5795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Lancelot G., Mayer R., Thuong N. T., Chassignol M., Hélène C. Synthesis and structural studies of a self-complementary decadeoxynucleotide d(AATTGCAATT). II.-Proton magnetic resonance studies. Biochimie. 1981 Oct;63(10):785–790. doi: 10.1016/s0300-9084(81)80038-7. [DOI] [PubMed] [Google Scholar]
  5. Mellema J. R., Haasnoot C. A., Van Boom J. H., Altona C. Complete assignment and conformational analysis of a deoxyribotetranucleotide. d(TAAT). A 360 and 500 Mhz NMR study. Biochim Biophys Acta. 1981 Sep 28;655(2):256–264. doi: 10.1016/0005-2787(81)90016-2. [DOI] [PubMed] [Google Scholar]
  6. Neumann J. M., Huynh-Dinh T., Kan S. K., Genissel B., Igolen J., Tran-Dinh S. DNA fragment conformations. 1H-NMR and relaxation studies of 2'-deoxyadenylyl(3'-5')thymidylyl-(3'-5')deoxyguanosylyl(3'-5')thymidine, d(A-T-G-T), in neutral aqueous solution. Eur J Biochem. 1982 Jan;121(2):317–323. doi: 10.1111/j.1432-1033.1982.tb05788.x. [DOI] [PubMed] [Google Scholar]
  7. Pardi A., Martin F. H., Tinoco I., Jr Comparative study of ribonucleotide, deoxyribonucleotide, and hybrid oligonucleotide helices by nuclear magnetic resonance. Biochemistry. 1981 Jul 7;20(14):3986–3996. doi: 10.1021/bi00517a007. [DOI] [PubMed] [Google Scholar]
  8. Patel D. J., Canuel L. L. Helix-coil transition of the self-complementary dG-dG-dA-dA-dT-dT-dC-dC duplex. Eur J Biochem. 1979 May 15;96(2):267–276. doi: 10.1111/j.1432-1033.1979.tb13037.x. [DOI] [PubMed] [Google Scholar]
  9. Patel D. J., Hilbers C. W. Proton nuclear magnetic resonance investigations of fraying in double-stranded d-ApTpGpCpApT in H2O solution. Biochemistry. 1975 Jun 17;14(12):2651–2656. doi: 10.1021/bi00683a014. [DOI] [PubMed] [Google Scholar]
  10. Patel D. J., Kozlowski S. A., Marky L. A., Broka C., Rice J. A., Itakura K., Breslauer K. J. Premelting and melting transitions in the d(CGCGAATTCGCG) self-complementary duplex in solution. Biochemistry. 1982 Feb 2;21(3):428–436. doi: 10.1021/bi00532a002. [DOI] [PubMed] [Google Scholar]
  11. Patel D. J. Peptide antibiotic-oligonucleotide interactions. Nuclear magnetic resonance investigations of complex formation between actinomycin D and d-ApTpGpCpApT in aqueous solution. Biochemistry. 1974 May 21;13(11):2396–2402. doi: 10.1021/bi00708a025. [DOI] [PubMed] [Google Scholar]
  12. Patel D. J. d-CpCpGpG and d-GpGpCpC self-complementary duplexes: Nmr studies of the helix-coil transition. Biopolymers. 1977 Aug;16(8):1635–1656. doi: 10.1002/bip.1977.360160804. [DOI] [PubMed] [Google Scholar]
  13. Phillips D. R., Roberts G. C. Proton nuclear magnetic resonance study of the self-complementary hexanucleotide d(pTpA)3 and its interaction with daunomycin. Biochemistry. 1980 Oct 14;19(21):4795–4801. doi: 10.1021/bi00562a013. [DOI] [PubMed] [Google Scholar]
  14. Tran-Dinh S., Neumann J. M., Huynh-Dinh T., Genissel B., Igolen J., Simonnot G. DNA fragment conformations. 1H-NMR studies of helix-coil transition, conformations and dynamic structures of the self-complementary deoxyhexanucleotide d(A-C-A-T-G-T) in aqueous solution. Eur J Biochem. 1982 Jun;124(3):415–425. [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES