Abstract
The algorithm of Gotoh computes in two passes of MN steps the alignment of a pair of sequences of lengths M and N, subject to a constraint on the form of the gap weighting function. This compares with the previous algorithm of Waterman et al. which runs in M2N steps. Gotoh also gave a method using two passes of (L+2)MN steps in the case where gap weights remain constant for gaps of length greater than L. Here we describe a procedure for computing the alignment (evolutionary distance and optimal path) in a single pass of MN steps for both cases.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Goad W. B., Kanehisa M. I. Pattern recognition in nucleic acid sequences. I. A general method for finding local homologies and symmetries. Nucleic Acids Res. 1982 Jan 11;10(1):247–263. doi: 10.1093/nar/10.1.247. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gotoh O. An improved algorithm for matching biological sequences. J Mol Biol. 1982 Dec 15;162(3):705–708. doi: 10.1016/0022-2836(82)90398-9. [DOI] [PubMed] [Google Scholar]
- McGeoch D. J., Dolan A., Pringle C. R. Comparisons of nucleotide sequences in the genomes of the New Jersey and Indiana serotypes of vesicular stomatitis virus. J Virol. 1980 Jan;33(1):69–77. doi: 10.1128/jvi.33.1.69-77.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Needleman S. B., Wunsch C. D. A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol. 1970 Mar;48(3):443–453. doi: 10.1016/0022-2836(70)90057-4. [DOI] [PubMed] [Google Scholar]
- Smith T. F., Waterman M. S., Fitch W. M. Comparative biosequence metrics. J Mol Evol. 1981;18(1):38–46. doi: 10.1007/BF01733210. [DOI] [PubMed] [Google Scholar]