Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jul 2;67(Pt 8):o1888–o1889. doi: 10.1107/S1600536811025293

tert-Butyl N-((1S)-2-hy­droxy-1-{N′-[(E)-2-hy­droxy-4-meth­oxy­benzyl­idene]hydrazinecarbon­yl}eth­yl)carbamate

James L Wardell a,, Marcus V N de Souza b, Alessandra C Pinheiro b, Edward R T Tiekink c,*, Solange M S V Wardell d
PMCID: PMC3212283  PMID: 22090940

Abstract

The mol­ecule of the title compound, C16H23N3O6, is twisted about the chiral C atom with the dihedral angle formed between the amide residues being 76.9 (3)°. Overall, the mol­ecule is curved with the terminal organic groups lying to the same side. The conformation about the imine bond [1.291 (5) Å] is E and an intra­molecular O—H⋯N hydrogen bond generates an S(6) ring. In the crystal, O—H⋯O and N—H⋯O hydrogen bonds involving the hy­droxy, amine and carbonyl groups lead to the formation of supra­molecular layers, which stack along the c-axis direction.

Related literature

For background to the use of l-serine derivatives in anti-tumour therapy, see: Jiao et al. (2009); Yakura et al. (2007). For background to N-acyl­hydrazone derivatives from l-serine for anti-tumour testing, see: Pinheiro et al. (2010, 2011a ,b ); de Souza et al. (2010, 2011); Howie et al. (2011); Tiekink et al. (2011).graphic file with name e-67-o1888-scheme1.jpg

Experimental

Crystal data

  • C16H23N3O6

  • M r = 353.37

  • Triclinic, Inline graphic

  • a = 5.3101 (14) Å

  • b = 5.7301 (13) Å

  • c = 14.651 (4) Å

  • α = 80.364 (16)°

  • β = 84.788 (11)°

  • γ = 74.845 (15)°

  • V = 423.70 (19) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 120 K

  • 0.62 × 0.18 × 0.03 mm

Data collection

  • Bruker–Nonius Roper CCD camera on κ-goniostat diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007) T min = 0.415, T max = 0.746

  • 7849 measured reflections

  • 1936 independent reflections

  • 1639 reflections with I > 2σ(I)

  • R int = 0.092

Refinement

  • R[F 2 > 2σ(F 2)] = 0.062

  • wR(F 2) = 0.158

  • S = 1.06

  • 1936 reflections

  • 242 parameters

  • 7 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.32 e Å−3

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811025293/hb5936sup1.cif

e-67-o1888-sup1.cif (20.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811025293/hb5936Isup2.hkl

e-67-o1888-Isup2.hkl (93.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1o⋯N1 0.84 (5) 1.99 (6) 2.666 (5) 137 (5)
O4—H4o⋯O3i 0.84 (3) 1.81 (3) 2.607 (5) 157 (6)
N2—H2n⋯O4ii 0.88 (4) 1.92 (3) 2.769 (5) 163 (4)
N3—H3n⋯O5iii 0.88 (4) 2.34 (4) 3.188 (5) 162 (4)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England, and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES (Brazil).

supplementary crystallographic information

Comment

The analysis of the title compound, (I), was conducted in the context of developing N-acylhydrazone derivatives from L-serine for use in anti-tumour testing (Pinheiro et al., 2010; de Souza et al., 2010; Pinheiro et al., 2011a; Pinheiro et al., 2011b; de Souza et al., 2011; Howie et al., 2011; Tiekink et al., 2011) owing to the known anti-tumour activity of L-serine derivatives (Jiao et al., 2009; Yakura et al., 2007).

The absolute structure of (I) could not be determined experimentally but, the assignment of the S-configuration at the C10 atom is based on a starting reagent, L-serine. The structure of (I), Fig. 1, is isomorphous with the analogue not featuring the hydroxyl group in the ring (Pinheiro et al. 2011b). The molecule adopts a curved conformation with both the benzene ring and tert-butyl group lying to the same side of the molecule. Nevertheless, there is a twist in the molecule, at the chiral centre, as seen in the dihedral angle formed between the two amide residues, i.e. N2,C9,O3 and N3,C12,O5, of 76.9 (3) °. The presence of an intramolecular O—H···N hydrogen bond, Table 1, ensures that the hydroxybenzene group is co-planar with the adjacent hydrazine residue with the dihedral angle between the (O3,N1,N2,C8,C9) and (C1–C6) planes being 9.05 (14) °. The conformation about the N1═C8 imine bond [1.291 (5) Å] is E.

As with related structures in this series, hydrogen bonds dominate the crystal packing, Table 1. The secondary hydroxyl group forms a O—H···O hydrogen bond to the hydrazine-carbonyl-O2, and accepts a N—H···.O hydrogen bond from the hydrazine-amine, leading to chains along the b axis. The carbamate-amine forms a N—H···O hydrogen bond to the carbamate-carbonyl-O4, leading to chains along the a axis. The result is the formation of a two-dimensional array in the ab plane, Fig. 2. The layers stack along the c axis, Fig. 3.

Experimental

To a stirred solution of (S)-t-BuOCONHCH(CH2OH)CONHNH2 (Howie et al., 2011) (1.0 mmol) in ethanol (10 ml) at room temperature was added 2-hydroxy-4-methoxybenzaldehyde (1.05 mmol). The reaction mixture was refluxed for 4 h, rotary evaporated and the residue purified by washing with cold ethanol (3 x 10 ml), affording the title compound, M.pt. 455 K, yield 84%. The sample for the structure determination was recrystallized from EtOH to afford colourless laths of (I).

1H NMR (500 MHz, DMSO-d6) δ (p.p.m.): 11.60 (1H, s, NHN), 11.46 (1H, s, C1—OH), 8.35 (1H, s, N=CH), 7.39 (1H, d, J = 8.4, H6), 6.84 (1H, d, J = 7.4, NHCH), 6.55–6.40 (2H, m, H3 and H5), 4.98 (1H, m, OH), 4.02 (1H, m, CH), 3.76 (3H, s, CH3O), 3.70–3.50 (2H, m, CH2OH), 1.39 (9H, s, (CH3)3C). 13C NMR(125 MHz, DMSO-d6) δ (p.p.m.): 171.5, 162.5, 158.3, 155.7, 141.8, 128.3, 112.1, 106.9, 101.4, 78.5, 61.6, 56.3, 55.6, 28.6. IR (cm-1, KBr): 3375 (O—H), 1677 (COCH and COO). MS/ESI: [M—H]: 352.4.

Refinement

The C-bound H atoms were geometrically placed (C–H = 0.95–1.00 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C). The O– and N-bound H atoms were located from a difference map and refined with the distance restraints O–H = 0.84 ± 0.01 and N–H = 0.88±0.01 Å, and with Uiso(H) = zUeq(carrier atom); z = 1.5 for O and z = 1.2 for N. In the absence of significant anomalous scattering effects, 1703 Friedel pairs were averaged in the final refinement. However, the absolute configuration was assigned on the basis of the chirality of the L-serine starting material.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) showing displacement ellipsoids at the 50% probability level.

Fig. 2.

Fig. 2.

A view of the supramolecular array in the ab plane in (I) with the O—H···O and N—H···O hydrogen bonding shown as orange and blue dashed lines, respectively. Hydrogen atoms not participating in the hydrogen bonding scheme are omitted for reasons of clariy.

Fig. 3.

Fig. 3.

A view in projection down the a axis of the stacking of 2-D supramolecular arrays along the c axis in (I), and with the O—H···O and N—H···O hydrogen bonding shown as orange and blue dashed lines, respectively.

Crystal data

C16H23N3O6 Z = 1
Mr = 353.37 F(000) = 188
Triclinic, P1 Dx = 1.385 Mg m3
Hall symbol: P 1 Mo Kα radiation, λ = 0.71073 Å
a = 5.3101 (14) Å Cell parameters from 41272 reflections
b = 5.7301 (13) Å θ = 2.9–27.5°
c = 14.651 (4) Å µ = 0.11 mm1
α = 80.364 (16)° T = 120 K
β = 84.788 (11)° Lath, colourless
γ = 74.845 (15)° 0.62 × 0.18 × 0.03 mm
V = 423.70 (19) Å3

Data collection

Bruker–Nonius Roper CCD camera on κ-goniostat diffractometer 1936 independent reflections
Radiation source: Bruker–Nonius FR591 rotating anode 1639 reflections with I > 2σ(I)
graphite Rint = 0.092
Detector resolution: 9.091 pixels mm-1 θmax = 27.5°, θmin = 3.7°
φ & ω scans h = −6→6
Absorption correction: multi-scan (SADABS; Sheldrick, 2007) k = −7→7
Tmin = 0.415, Tmax = 0.746 l = −18→18
7849 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.062 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.158 w = 1/[σ2(Fo2) + (0.0932P)2 + 0.0716P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max < 0.001
1936 reflections Δρmax = 0.26 e Å3
242 parameters Δρmin = −0.32 e Å3
7 restraints Absolute structure: nd
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 1.3235 (6) −0.0932 (5) 1.0670 (2) 0.0337 (7)
H1o 1.233 (10) −0.078 (11) 1.021 (3) 0.051*
O2 1.5080 (6) 0.3094 (6) 1.3026 (2) 0.0365 (7)
O3 0.8525 (6) −0.2427 (5) 0.8860 (2) 0.0359 (7)
O4 0.3605 (6) −0.3907 (5) 0.8847 (2) 0.0330 (7)
H4o 0.201 (3) −0.351 (11) 0.901 (4) 0.049*
O5 0.0570 (6) 0.2513 (5) 0.7006 (2) 0.0318 (7)
O6 0.3497 (6) 0.4260 (5) 0.6066 (2) 0.0307 (7)
N1 0.8884 (7) 0.1219 (6) 0.9773 (2) 0.0296 (8)
N2 0.6946 (7) 0.1467 (6) 0.9162 (2) 0.0289 (7)
H2n 0.564 (7) 0.277 (6) 0.907 (3) 0.035*
N3 0.4886 (7) 0.1547 (6) 0.7304 (2) 0.0290 (8)
H3n 0.630 (6) 0.207 (9) 0.712 (3) 0.035*
C1 1.0379 (8) 0.2948 (7) 1.0923 (3) 0.0277 (8)
C2 1.2576 (8) 0.1000 (7) 1.1135 (3) 0.0296 (9)
C3 1.4175 (8) 0.0995 (7) 1.1835 (3) 0.0285 (8)
H3 1.5648 −0.0341 1.1972 0.034*
C4 1.3625 (8) 0.2931 (8) 1.2332 (3) 0.0311 (9)
C5 1.1485 (10) 0.4908 (8) 1.2127 (3) 0.0360 (10)
H5 1.1141 0.6261 1.2456 0.043*
C6 0.9868 (9) 0.4896 (8) 1.1443 (3) 0.0351 (10)
H6 0.8381 0.6226 1.1320 0.042*
C7 1.7297 (9) 0.1110 (9) 1.3266 (3) 0.0380 (10)
H7A 1.6729 −0.0403 1.3454 0.057*
H7B 1.8147 0.1440 1.3779 0.057*
H7C 1.8534 0.0933 1.2728 0.057*
C8 0.8536 (9) 0.2999 (8) 1.0244 (3) 0.0313 (9)
H8 0.7059 0.4353 1.0146 0.038*
C9 0.6886 (8) −0.0437 (7) 0.8759 (3) 0.0298 (9)
C10 0.4544 (8) −0.0039 (7) 0.8164 (3) 0.0283 (9)
H10 0.2931 0.0778 0.8509 0.034*
C11 0.4262 (9) −0.2510 (7) 0.7997 (3) 0.0322 (9)
H11A 0.2880 −0.2258 0.7554 0.039*
H11B 0.5923 −0.3421 0.7720 0.039*
C12 0.2788 (8) 0.2769 (7) 0.6807 (3) 0.0279 (8)
C13 0.1569 (8) 0.5755 (7) 0.5405 (3) 0.0296 (9)
C14 −0.0560 (9) 0.7519 (8) 0.5888 (3) 0.0353 (10)
H14A −0.1694 0.6616 0.6280 0.053*
H14B −0.1596 0.8736 0.5424 0.053*
H14C 0.0236 0.8347 0.6274 0.053*
C15 0.3213 (9) 0.7096 (8) 0.4718 (3) 0.0347 (10)
H15A 0.4001 0.8072 0.5042 0.052*
H15B 0.2106 0.8176 0.4239 0.052*
H15C 0.4595 0.5908 0.4428 0.052*
C16 0.0458 (9) 0.4084 (8) 0.4931 (3) 0.0337 (9)
H16A 0.1896 0.2843 0.4694 0.051*
H16B −0.0583 0.5058 0.4416 0.051*
H16C −0.0651 0.3282 0.5380 0.051*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0317 (16) 0.0303 (15) 0.0357 (16) 0.0037 (12) −0.0057 (12) −0.0114 (12)
O2 0.0309 (17) 0.0413 (18) 0.0365 (17) −0.0023 (13) −0.0052 (13) −0.0125 (13)
O3 0.0266 (16) 0.0257 (15) 0.0500 (19) 0.0022 (12) −0.0051 (13) −0.0032 (13)
O4 0.0271 (15) 0.0236 (14) 0.0406 (17) 0.0028 (12) −0.0029 (13) 0.0025 (12)
O5 0.0281 (16) 0.0255 (15) 0.0386 (17) −0.0033 (11) −0.0039 (12) −0.0002 (12)
O6 0.0267 (15) 0.0273 (14) 0.0327 (15) 0.0000 (11) −0.0064 (12) 0.0023 (11)
N1 0.0277 (18) 0.0285 (18) 0.0288 (17) −0.0005 (14) −0.0054 (13) −0.0018 (14)
N2 0.0253 (18) 0.0279 (18) 0.0296 (17) 0.0007 (13) −0.0051 (14) −0.0027 (14)
N3 0.0272 (18) 0.0242 (17) 0.0315 (18) −0.0005 (14) −0.0037 (14) −0.0007 (14)
C1 0.028 (2) 0.025 (2) 0.028 (2) −0.0023 (16) −0.0034 (15) −0.0022 (15)
C2 0.030 (2) 0.025 (2) 0.031 (2) −0.0014 (17) 0.0016 (17) −0.0060 (16)
C3 0.026 (2) 0.0257 (19) 0.031 (2) 0.0015 (15) −0.0026 (16) −0.0059 (15)
C4 0.031 (2) 0.032 (2) 0.028 (2) −0.0038 (17) 0.0016 (17) −0.0050 (17)
C5 0.045 (3) 0.029 (2) 0.033 (2) −0.0061 (19) −0.0011 (19) −0.0093 (17)
C6 0.035 (2) 0.025 (2) 0.038 (2) 0.0014 (17) −0.0014 (18) −0.0016 (17)
C7 0.039 (3) 0.036 (2) 0.035 (2) −0.002 (2) −0.0066 (19) −0.0059 (19)
C8 0.031 (2) 0.027 (2) 0.033 (2) −0.0033 (17) −0.0044 (17) −0.0004 (16)
C9 0.028 (2) 0.0241 (19) 0.031 (2) 0.0029 (16) −0.0033 (16) −0.0017 (15)
C10 0.027 (2) 0.0256 (19) 0.028 (2) 0.0012 (16) −0.0030 (16) −0.0021 (15)
C11 0.034 (2) 0.027 (2) 0.032 (2) 0.0005 (17) −0.0032 (18) −0.0045 (17)
C12 0.030 (2) 0.0211 (18) 0.029 (2) 0.0001 (15) −0.0033 (16) −0.0017 (15)
C13 0.031 (2) 0.0217 (19) 0.031 (2) 0.0020 (16) −0.0042 (16) −0.0005 (15)
C14 0.039 (2) 0.026 (2) 0.035 (2) 0.0025 (18) −0.0022 (18) −0.0044 (17)
C15 0.036 (2) 0.028 (2) 0.035 (2) 0.0008 (18) −0.0037 (18) −0.0020 (17)
C16 0.034 (2) 0.028 (2) 0.037 (2) −0.0026 (17) −0.0051 (18) −0.0062 (17)

Geometric parameters (Å, °)

O1—C2 1.348 (5) C5—C6 1.379 (7)
O1—H1o 0.842 (11) C5—H5 0.9500
O2—C4 1.362 (5) C6—H6 0.9500
O2—C7 1.429 (5) C7—H7A 0.9800
O3—C9 1.236 (5) C7—H7B 0.9800
O4—C11 1.432 (5) C7—H7C 0.9800
O4—H4o 0.841 (11) C8—H8 0.9500
O5—C12 1.228 (5) C9—C10 1.530 (6)
O6—C12 1.353 (5) C10—C11 1.523 (6)
O6—C13 1.472 (5) C10—H10 1.0000
N1—C8 1.291 (5) C11—H11A 0.9900
N1—N2 1.388 (5) C11—H11B 0.9900
N2—C9 1.333 (5) C13—C14 1.516 (6)
N2—H2n 0.880 (10) C13—C15 1.516 (6)
N3—C12 1.353 (5) C13—C16 1.529 (6)
N3—C10 1.452 (5) C14—H14A 0.9800
N3—H3n 0.882 (11) C14—H14B 0.9800
C1—C2 1.404 (5) C14—H14C 0.9800
C1—C6 1.410 (6) C15—H15A 0.9800
C1—C8 1.449 (6) C15—H15B 0.9800
C2—C3 1.389 (6) C15—H15C 0.9800
C3—C4 1.381 (6) C16—H16A 0.9800
C3—H3 0.9500 C16—H16B 0.9800
C4—C5 1.393 (6) C16—H16C 0.9800
C2—O1—H1o 114 (4) N2—C9—C10 115.1 (3)
C4—O2—C7 117.7 (3) N3—C10—C11 112.1 (3)
C11—O4—H4o 114 (4) N3—C10—C9 109.5 (3)
C12—O6—C13 121.0 (3) C11—C10—C9 109.2 (3)
C8—N1—N2 114.7 (3) N3—C10—H10 108.6
C9—N2—N1 119.3 (3) C11—C10—H10 108.6
C9—N2—H2n 117 (3) C9—C10—H10 108.6
N1—N2—H2n 124 (3) O4—C11—C10 110.7 (3)
C12—N3—C10 119.8 (3) O4—C11—H11A 109.5
C12—N3—H3n 113 (3) C10—C11—H11A 109.5
C10—N3—H3n 126 (3) O4—C11—H11B 109.5
C2—C1—C6 117.6 (4) C10—C11—H11B 109.5
C2—C1—C8 123.9 (4) H11A—C11—H11B 108.1
C6—C1—C8 118.4 (4) O5—C12—N3 123.8 (4)
O1—C2—C3 117.1 (3) O5—C12—O6 125.6 (4)
O1—C2—C1 121.9 (4) N3—C12—O6 110.5 (4)
C3—C2—C1 121.0 (4) O6—C13—C14 110.6 (3)
C4—C3—C2 120.1 (4) O6—C13—C15 102.4 (3)
C4—C3—H3 120.0 C14—C13—C15 111.4 (3)
C2—C3—H3 120.0 O6—C13—C16 109.5 (3)
O2—C4—C3 124.3 (4) C14—C13—C16 111.9 (4)
O2—C4—C5 115.4 (4) C15—C13—C16 110.7 (4)
C3—C4—C5 120.2 (4) C13—C14—H14A 109.5
C6—C5—C4 119.8 (4) C13—C14—H14B 109.5
C6—C5—H5 120.1 H14A—C14—H14B 109.5
C4—C5—H5 120.1 C13—C14—H14C 109.5
C5—C6—C1 121.3 (4) H14A—C14—H14C 109.5
C5—C6—H6 119.3 H14B—C14—H14C 109.5
C1—C6—H6 119.3 C13—C15—H15A 109.5
O2—C7—H7A 109.5 C13—C15—H15B 109.5
O2—C7—H7B 109.5 H15A—C15—H15B 109.5
H7A—C7—H7B 109.5 C13—C15—H15C 109.5
O2—C7—H7C 109.5 H15A—C15—H15C 109.5
H7A—C7—H7C 109.5 H15B—C15—H15C 109.5
H7B—C7—H7C 109.5 C13—C16—H16A 109.5
N1—C8—C1 120.5 (4) C13—C16—H16B 109.5
N1—C8—H8 119.7 H16A—C16—H16B 109.5
C1—C8—H8 119.7 C13—C16—H16C 109.5
O3—C9—N2 124.3 (4) H16A—C16—H16C 109.5
O3—C9—C10 120.6 (4) H16B—C16—H16C 109.5
C8—N1—N2—C9 −168.9 (4) C6—C1—C8—N1 −177.9 (4)
C6—C1—C2—O1 −179.4 (4) N1—N2—C9—O3 −3.1 (6)
C8—C1—C2—O1 4.4 (6) N1—N2—C9—C10 175.1 (3)
C6—C1—C2—C3 0.3 (6) C12—N3—C10—C11 79.4 (4)
C8—C1—C2—C3 −175.8 (4) C12—N3—C10—C9 −159.2 (3)
O1—C2—C3—C4 179.4 (4) O3—C9—C10—N3 −107.6 (4)
C1—C2—C3—C4 −0.4 (6) N2—C9—C10—N3 74.1 (4)
C7—O2—C4—C3 −1.1 (6) O3—C9—C10—C11 15.5 (5)
C7—O2—C4—C5 179.9 (4) N2—C9—C10—C11 −162.8 (4)
C2—C3—C4—O2 −179.7 (4) N3—C10—C11—O4 −172.8 (3)
C2—C3—C4—C5 −0.8 (6) C9—C10—C11—O4 65.6 (4)
O2—C4—C5—C6 −179.0 (4) C10—N3—C12—O5 −4.8 (6)
C3—C4—C5—C6 1.9 (7) C10—N3—C12—O6 176.0 (3)
C4—C5—C6—C1 −2.0 (7) C13—O6—C12—O5 −0.4 (6)
C2—C1—C6—C5 0.9 (7) C13—O6—C12—N3 178.8 (3)
C8—C1—C6—C5 177.2 (4) C12—O6—C13—C14 60.8 (5)
N2—N1—C8—C1 178.5 (4) C12—O6—C13—C15 179.6 (3)
C2—C1—C8—N1 −1.8 (7) C12—O6—C13—C16 −62.9 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1o···N1 0.84 (5) 1.99 (6) 2.666 (5) 137 (5)
O4—H4o···O3i 0.84 (3) 1.81 (3) 2.607 (5) 157 (6)
N2—H2n···O4ii 0.88 (4) 1.92 (3) 2.769 (5) 163 (4)
N3—H3n···O5iii 0.88 (4) 2.34 (4) 3.188 (5) 162 (4)

Symmetry codes: (i) x−1, y, z; (ii) x, y+1, z; (iii) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5936).

References

  1. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  3. Hooft, R. W. W. (1998). COLLECT Nonius BV, Delft, The Netherlands.
  4. Howie, R. A., de Souza, M. V. N., Pinheiro, A. C., Kaiser, C. R., Wardell, J. L. & Wardell, S. M. S. V. (2011). Z. Kristallogr. 226, 483–491.
  5. Jiao, X., Wang, L., Xiao, Q., Xie, P. & Liang, X. (2009). J. Asian Nat. Prod. Res. 11, 274–280. [DOI] [PubMed]
  6. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  7. Pinheiro, A. C., Souza, M. V. N. de, Tiekink, E. R. T., Wardell, J. L. & Wardell, S. M. S. V. (2010). Acta Cryst. E66, o1004–o1005. [DOI] [PMC free article] [PubMed]
  8. Pinheiro, A. C., Souza, M. V. N. de, Tiekink, E. R. T., Wardell, S. M. S. V. & Wardell, J. L. (2011a). Acta Cryst. E67, o581–o582. [DOI] [PMC free article] [PubMed]
  9. Pinheiro, A. C., Souza, M. V. N. de, Tiekink, E. R. T., Wardell, S. M. S. V. & Wardell, J. L. (2011b). Acta Cryst. E67, o1805–o1806. [DOI] [PMC free article] [PubMed]
  10. Sheldrick, G. M. (2007). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Souza, M. V. N. de, Pinheiro, A. C., Tiekink, E. R. T., Wardell, S. M. S. V. & Wardell, J. L. (2010). Acta Cryst. E66, o3253–o3254. [DOI] [PMC free article] [PubMed]
  13. Souza, M. V. N. de, Pinheiro, A. C., Tiekink, E. R. T., Wardell, S. M. S. V. & Wardell, J. L. (2011). Acta Cryst. E67, o1868–o1869. [DOI] [PMC free article] [PubMed]
  14. Tiekink, E. R. T., Souza, M. V. N. de, Pinheiro, A. C., Wardell, S. M. S. V. & Wardell, J. L. (2011). Acta Cryst. E67, o1866–o1867. [DOI] [PMC free article] [PubMed]
  15. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  16. Yakura, T., Yoshimoto, Y., Ishida, C. & Mabuchi, S. (2007). Tetrahedron, 63, 4429–4438.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811025293/hb5936sup1.cif

e-67-o1888-sup1.cif (20.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811025293/hb5936Isup2.hkl

e-67-o1888-Isup2.hkl (93.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES