Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jul 2;67(Pt 8):o1891. doi: 10.1107/S1600536811025013

1-(4-Chloro­benzo­yl)-3-cyclo­hexyl-3-methyl­thio­urea

Aisha A Al-abbasi a, Bohari M Yamin a, Mohammad B Kassim a,b,*
PMCID: PMC3212285  PMID: 22090942

Abstract

In the title compound, C15H19ClN2OS, the dihedral angle between the amide and thio­urea fragments is 58.07 (17)°. The cyclo­hexane group adopts a chair conformation and is twisted relative to the thio­urea fragment, forming a dihedral angle of 87.32 (18)°. In the crystal, N—H⋯S hydrogen bond links the mol­ecules into chains running parallel to the a-axis direction.

Related literature

For related structures and background references, see: Al-abbasi & Kassim (2011); Nasir et al. (2011). For further synthetic details, see: Hassan et al. (2008).graphic file with name e-67-o1891-scheme1.jpg

Experimental

Crystal data

  • C15H19ClN2OS

  • M r = 310.83

  • Triclinic, Inline graphic

  • a = 5.042 (2) Å

  • b = 11.368 (4) Å

  • c = 15.139 (6) Å

  • α = 69.865 (7)°

  • β = 82.698 (8)°

  • γ = 80.702 (8)°

  • V = 801.7 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 298 K

  • 0.52 × 0.23 × 0.03 mm

Data collection

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000) T min = 0.906, T max = 0.989

  • 9192 measured reflections

  • 3149 independent reflections

  • 1935 reflections with I > 2σ(I)

  • R int = 0.063

Refinement

  • R[F 2 > 2σ(F 2)] = 0.085

  • wR(F 2) = 0.192

  • S = 1.10

  • 3149 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811025013/hb5920sup1.cif

e-67-o1891-sup1.cif (17KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811025013/hb5920Isup2.hkl

e-67-o1891-Isup2.hkl (154.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811025013/hb5920Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯S1i 0.86 2.73 3.411 (4) 137

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank Universiti Kebangsaan Malaysia for grants UKM-GUP-BTT-07–30–190 and UKM-OUP-TK-16–73/2010 and sabbatical leave for MBK, and the Kementerian Pengajian Tinggi, Malaysia, for the research fund No. UKM-ST-06-FRGS0111–2009. AAA thanks the Libyan Ministry of Higher Education and Sabha University for her PhD schol­arship.

supplementary crystallographic information

Comment

The title compound, (I), is a thiourea derivative analogous to our previously reported compounds (Al-abbasi & Kassim, 2011; Nasir et al., 2011). The thiono S and the carbonyl O adopt a gauche conformation at a partially double N1—C8 bond with C7—N1—C8—S1 torsion angle of -124.4 (3)°. The dihedral angle between the mean planes of the thiourea (S1/N1/N2/C8) and the amide group (O1/N1/C1/C7/C8) is 58.07 (17)°. The cyclohexane has a chair corformation and the mean planes of (C9/C10/C11/C12/C13/C14) and the 4-chlorobenzoyl (Cl1/C1/C2/C3/C4/C5/C6/C7) fragments make an angle of 26.8 (2)°.

In the crystal, intermolecular N1—H···S1 hydrogen bond links the molecules into a one dimentional polymeric structure parallel to the a-axis.

Experimental

The title compound was prepared according to a previously reported compound (Hassan et al., 2008). Colourless plates of (I) were obtained by a slow evaporation of ethanolic solution at room temperature (yield 80%).

Refinement

All H atoms were postioned geometrically with C—H bond lengths in the range 0.93 - 0.97 Å and N—H bond of 0.86 Å,.and refined in the riding model approximation with Uiso(H)=1.2Ueq(C,N), except for methyl group where Uiso(H)= 1.5Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

A packing diagram of the title compound down the c-axis showing the intermolecular hydrogen bonds N—H···S (-x+1, -y + 1, -z).

Crystal data

C15H19ClN2OS Z = 2
Mr = 310.83 F(000) = 328
Triclinic, P1 Dx = 1.288 Mg m3
Hall symbol: -P 1 Melting point = 418–420 K
a = 5.042 (2) Å Mo Kα radiation, λ = 0.71073 Å
b = 11.368 (4) Å Cell parameters from 1114 reflections
c = 15.139 (6) Å θ = 1.9–26.0°
α = 69.865 (7)° µ = 0.37 mm1
β = 82.698 (8)° T = 298 K
γ = 80.702 (8)° Plate, colourless
V = 801.7 (5) Å3 0.52 × 0.23 × 0.03 mm

Data collection

Bruker SMART APEX CCD diffractometer 3149 independent reflections
Radiation source: fine-focus sealed tube 1935 reflections with I > 2σ(I)
graphite Rint = 0.063
ω scan θmax = 26.0°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2000) h = −6→6
Tmin = 0.906, Tmax = 0.989 k = −14→14
9192 measured reflections l = −18→18

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.085 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.192 H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0826P)2 + 0.0972P] where P = (Fo2 + 2Fc2)/3
3149 reflections (Δ/σ)max < 0.001
182 parameters Δρmax = 0.37 e Å3
0 restraints Δρmin = −0.21 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.3915 (2) 0.34433 (9) 0.12184 (8) 0.0545 (4)
Cl1 1.2888 (4) 0.63599 (15) −0.45045 (10) 0.1074 (6)
N1 0.7565 (6) 0.3373 (3) −0.0182 (2) 0.0470 (8)
H1 0.7996 0.4111 −0.0278 0.056*
N2 0.7860 (6) 0.1587 (3) 0.1141 (2) 0.0436 (8)
O1 0.7203 (6) 0.1941 (3) −0.0894 (2) 0.0647 (9)
C1 0.9200 (8) 0.3791 (3) −0.1813 (3) 0.0453 (10)
C8 0.6580 (8) 0.2720 (3) 0.0727 (3) 0.0434 (10)
C7 0.7916 (8) 0.2943 (4) −0.0951 (3) 0.0496 (10)
C2 1.1049 (8) 0.4556 (4) −0.1799 (3) 0.0511 (10)
H2 1.1513 0.4549 −0.1221 0.061*
C9 0.6886 (8) 0.0807 (3) 0.2086 (3) 0.0500 (10)
H9 0.4977 0.1115 0.2179 0.060*
C3 1.2217 (9) 0.5326 (4) −0.2615 (3) 0.0593 (12)
H3 1.3486 0.5823 −0.2593 0.071*
C10 0.8322 (9) 0.0976 (4) 0.2850 (3) 0.0642 (12)
H10A 0.8101 0.1863 0.2789 0.077*
H10B 1.0233 0.0699 0.2772 0.077*
C6 0.8558 (9) 0.3803 (4) −0.2693 (3) 0.0614 (12)
H6 0.7376 0.3271 −0.2722 0.074*
C15 1.0483 (8) 0.1113 (4) 0.0754 (3) 0.0561 (11)
H15A 1.0200 0.0601 0.0393 0.084*
H15B 1.1572 0.0614 0.1262 0.084*
H15C 1.1382 0.1813 0.0354 0.084*
C4 1.1485 (10) 0.5351 (4) −0.3466 (3) 0.0668 (13)
C5 0.9673 (10) 0.4596 (5) −0.3505 (3) 0.0718 (14)
H5 0.9201 0.4623 −0.4086 0.086*
C14 0.7051 (9) −0.0591 (4) 0.2195 (4) 0.0708 (14)
H14A 0.6045 −0.0679 0.1721 0.085*
H14B 0.8915 −0.0930 0.2098 0.085*
C12 0.7376 (12) −0.1166 (6) 0.3931 (4) 0.108 (2)
H12A 0.6573 −0.1624 0.4547 0.130*
H12B 0.9254 −0.1518 0.3886 0.130*
C13 0.5919 (11) −0.1324 (5) 0.3164 (5) 0.100 (2)
H13A 0.6101 −0.2212 0.3229 0.120*
H13B 0.4015 −0.1031 0.3240 0.120*
C11 0.7191 (12) 0.0218 (6) 0.3827 (4) 0.0969 (18)
H11A 0.8191 0.0306 0.4303 0.116*
H11B 0.5322 0.0549 0.3927 0.116*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0603 (7) 0.0371 (6) 0.0621 (7) 0.0054 (5) −0.0001 (5) −0.0182 (5)
Cl1 0.1343 (14) 0.1065 (12) 0.0655 (9) −0.0256 (10) 0.0032 (9) −0.0077 (8)
N1 0.065 (2) 0.0364 (17) 0.045 (2) −0.0057 (15) −0.0051 (17) −0.0215 (15)
N2 0.0444 (19) 0.0371 (17) 0.051 (2) 0.0010 (14) −0.0094 (16) −0.0180 (15)
O1 0.090 (2) 0.0534 (18) 0.065 (2) −0.0119 (16) −0.0157 (17) −0.0333 (16)
C1 0.049 (2) 0.043 (2) 0.046 (2) 0.0083 (18) −0.0065 (19) −0.0231 (19)
C8 0.051 (2) 0.038 (2) 0.050 (2) −0.0032 (18) −0.010 (2) −0.0238 (19)
C7 0.053 (3) 0.043 (2) 0.057 (3) 0.0087 (19) −0.016 (2) −0.025 (2)
C2 0.051 (3) 0.054 (2) 0.055 (3) 0.001 (2) −0.006 (2) −0.030 (2)
C9 0.042 (2) 0.039 (2) 0.067 (3) −0.0003 (17) −0.009 (2) −0.016 (2)
C3 0.057 (3) 0.056 (3) 0.070 (3) −0.003 (2) −0.006 (2) −0.029 (2)
C10 0.078 (3) 0.057 (3) 0.054 (3) −0.015 (2) −0.007 (2) −0.010 (2)
C6 0.074 (3) 0.066 (3) 0.055 (3) −0.004 (2) −0.015 (2) −0.033 (2)
C15 0.050 (3) 0.056 (2) 0.069 (3) 0.011 (2) −0.014 (2) −0.033 (2)
C4 0.073 (3) 0.064 (3) 0.056 (3) 0.002 (3) −0.003 (3) −0.017 (2)
C5 0.085 (4) 0.087 (4) 0.047 (3) 0.002 (3) −0.018 (3) −0.028 (3)
C14 0.059 (3) 0.037 (2) 0.112 (4) −0.002 (2) −0.019 (3) −0.016 (3)
C12 0.080 (4) 0.093 (5) 0.103 (5) −0.011 (3) 0.005 (4) 0.024 (4)
C13 0.062 (3) 0.045 (3) 0.163 (6) −0.013 (2) −0.003 (4) 0.003 (3)
C11 0.106 (5) 0.104 (5) 0.061 (3) −0.018 (4) −0.004 (3) 0.000 (3)

Geometric parameters (Å, °)

S1—C8 1.687 (4) C10—H10A 0.9700
Cl1—C4 1.739 (5) C10—H10B 0.9700
N1—C8 1.391 (5) C6—C5 1.365 (6)
N1—C7 1.391 (5) C6—H6 0.9300
N1—H1 0.8600 C15—H15A 0.9600
N2—C8 1.321 (4) C15—H15B 0.9600
N2—C9 1.470 (5) C15—H15C 0.9600
N2—C15 1.474 (5) C4—C5 1.370 (6)
O1—C7 1.221 (4) C5—H5 0.9300
C1—C2 1.381 (5) C14—C13 1.507 (7)
C1—C6 1.406 (5) C14—H14A 0.9700
C1—C7 1.474 (5) C14—H14B 0.9700
C2—C3 1.370 (6) C12—C11 1.515 (8)
C2—H2 0.9300 C12—C13 1.524 (8)
C9—C10 1.520 (6) C12—H12A 0.9700
C9—C14 1.530 (5) C12—H12B 0.9700
C9—H9 0.9800 C13—H13A 0.9700
C3—C4 1.375 (6) C13—H13B 0.9700
C3—H3 0.9300 C11—H11A 0.9700
C10—C11 1.524 (6) C11—H11B 0.9700
C8—N1—C7 126.1 (3) N2—C15—H15A 109.5
C8—N1—H1 117.0 N2—C15—H15B 109.5
C7—N1—H1 117.0 H15A—C15—H15B 109.5
C8—N2—C9 120.4 (3) N2—C15—H15C 109.5
C8—N2—C15 122.6 (3) H15A—C15—H15C 109.5
C9—N2—C15 116.5 (3) H15B—C15—H15C 109.5
C2—C1—C6 118.3 (4) C5—C4—C3 120.9 (4)
C2—C1—C7 123.2 (4) C5—C4—Cl1 119.9 (4)
C6—C1—C7 118.5 (4) C3—C4—Cl1 119.2 (4)
N2—C8—N1 116.8 (3) C6—C5—C4 120.3 (4)
N2—C8—S1 125.5 (3) C6—C5—H5 119.9
N1—C8—S1 117.8 (3) C4—C5—H5 119.9
O1—C7—N1 121.5 (4) C13—C14—C9 110.6 (4)
O1—C7—C1 124.2 (4) C13—C14—H14A 109.5
N1—C7—C1 114.4 (3) C9—C14—H14A 109.5
C3—C2—C1 121.6 (4) C13—C14—H14B 109.5
C3—C2—H2 119.2 C9—C14—H14B 109.5
C1—C2—H2 119.2 H14A—C14—H14B 108.1
N2—C9—C10 111.3 (3) C11—C12—C13 110.4 (5)
N2—C9—C14 113.4 (4) C11—C12—H12A 109.6
C10—C9—C14 110.9 (4) C13—C12—H12A 109.6
N2—C9—H9 107.0 C11—C12—H12B 109.6
C10—C9—H9 107.0 C13—C12—H12B 109.6
C14—C9—H9 107.0 H12A—C12—H12B 108.1
C2—C3—C4 119.0 (4) C14—C13—C12 111.1 (4)
C2—C3—H3 120.5 C14—C13—H13A 109.4
C4—C3—H3 120.5 C12—C13—H13A 109.4
C9—C10—C11 110.8 (4) C14—C13—H13B 109.4
C9—C10—H10A 109.5 C12—C13—H13B 109.4
C11—C10—H10A 109.5 H13A—C13—H13B 108.0
C9—C10—H10B 109.5 C12—C11—C10 111.0 (5)
C11—C10—H10B 109.5 C12—C11—H11A 109.4
H10A—C10—H10B 108.1 C10—C11—H11A 109.4
C5—C6—C1 120.0 (4) C12—C11—H11B 109.4
C5—C6—H6 120.0 C10—C11—H11B 109.4
C1—C6—H6 120.0 H11A—C11—H11B 108.0

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···S1i 0.86 2.73 3.411 (4) 137

Symmetry codes: (i) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5920).

References

  1. Al-abbasi, A. A. & Kassim, M. B. (2011). Acta Cryst. E67, o611. [DOI] [PMC free article] [PubMed]
  2. Bruker (2000). SADABS, SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2008). Acta Cryst. E64, o1727. [DOI] [PMC free article] [PubMed]
  4. Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
  5. Nasir, M. F. M., Hassan, I. N., Wan Daud, W. R., Yamin, B. M. & Kassim, M. B. (2011). Acta Cryst. E67, o1218. [DOI] [PMC free article] [PubMed]
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811025013/hb5920sup1.cif

e-67-o1891-sup1.cif (17KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811025013/hb5920Isup2.hkl

e-67-o1891-Isup2.hkl (154.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811025013/hb5920Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES