Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jul 6;67(Pt 8):o1928. doi: 10.1107/S1600536811025840

2-(4-Iodo­phen­oxy)acetamide

Richard Betz a,*, Cedric McCleland a, Stephen Glover a
PMCID: PMC3212316  PMID: 22090973

Abstract

The mol­ecule of the title compound, C8H8INO2, amide-typical resonance shortens the nominal C—N single bond to 1.322 (7) Å. In the crystal, hydrogen bonds involving both nitro­gen-bound H atoms as well as C—H⋯O contacts connect the mol­ecules into double layers approximately perpendicular to the crystallographic b axis. No π-stacking is apparent in the crystal structure.

Related literature

For the crystal structure of 2-(4-nitro­phen­oxy)acetamide, see: Lakshmi Rao et al. (1987) and of 2-(4-chloro-2-methyl­phen­oxy)acetamide, see: Rao et al. (1987). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995). For a description of the Cambridge Structural Database, see: Allen (2002). For the preparation, see: Glover et al. (1973).graphic file with name e-67-o1928-scheme1.jpg

Experimental

Crystal data

  • C8H8INO2

  • M r = 277.05

  • Monoclinic, Inline graphic

  • a = 5.1411 (4) Å

  • b = 26.473 (2) Å

  • c = 7.2960 (7) Å

  • β = 109.564 (3)°

  • V = 935.66 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.38 mm−1

  • T = 200 K

  • 0.55 × 0.18 × 0.10 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008) T min = 0.824, T max = 1.000

  • 8332 measured reflections

  • 2282 independent reflections

  • 2089 reflections with I > 2σ(I)

  • R int = 0.020

Refinement

  • R[F 2 > 2σ(F 2)] = 0.064

  • wR(F 2) = 0.120

  • S = 1.29

  • 2282 reflections

  • 109 parameters

  • H-atom parameters constrained

  • Δρmax = 1.50 e Å−3

  • Δρmin = −1.58 e Å−3

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811025840/aa2016sup1.cif

e-67-o1928-sup1.cif (13.3KB, cif)

Supplementary material file. DOI: 10.1107/S1600536811025840/aa2016Isup2.cdx

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811025840/aa2016Isup3.hkl

e-67-o1928-Isup3.hkl (112.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811025840/aa2016Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H71⋯O1i 0.88 2.00 2.881 (6) 178
N1—H72⋯O1ii 0.88 2.28 2.954 (6) 133
C2—H21⋯O1iii 0.99 2.48 3.422 (8) 158

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors thank Mrs Vida Maqoko for helpful discussions.

supplementary crystallographic information

Comment

Unlike carboxylic acids, their pertaining amides have not been studied extensively as ligands in coordination chemistry. Owing to their versatility in terms of denticity, keto-enol tautomerism as well as their possible use as neutral – or upon deprotonation – anionic ligands we set out to investigate the coordination behaviour of substituted acetamide derivatives to elucidate the rules guiding the formation of complex compounds. To enable comparative studies with envisioned reaction products, we determined the molecular and crystal structure of the title compound. So far, only the structures of 2-(4-nitrophenoxy)acetamide (Lakshmi Rao et al., 1987) and of 2-(4-chloro-2-methylphenoxy)acetamide (Rao et al., 1987) have been discussed as examples of phenoxy-substituted derivatives of acetamide.

The C–N single bond is shortened to 1.322 (7) Å due to the amide-typical resonance. This value is in good agreement with other derivatives of acetamide whose crystallographic data has been deposited with the Cambridge Structural Database (Allen, 2002) and whose ketonic oxygen atom is not involved in donor action towards transition metals. Intracyclic C–C–C angles hardly deviate from the ideal value of 120 °. The least-squares planes defined by the acetamide moiety and the oxygen atom of the phenoxy-derivative substituent on the one hand and the carbon atoms of the carbocycle on the other hand intersect at an angle of 24.91 (29) ° (Fig. 1 and Fig. 2).

In the crystal structure, both nitrogen-bonded H atoms participate in hydrogen bonds which invariably have the carbonyl oxygen atom as acceptor. While one of the H atoms of the amino group connects the molecules to centrosymmetric dimeric subunits, the other H atom of the NH2 group connects these dimers to chains along [1 0 0]. Additionally, one of the hydrogen atoms of the methylene group forms a C–H···O contact whose range falls by more than 0.2 Å below the sum of van-der-Waals radii of the respective atoms. Again, the double-bonded O atom acts as acceptor. In terms of graph-set analysis (Etter et al., 1990; Bernstein et al., 1995), the hydrogen bonds stemming from the amino group can be described by a C11(4)R22(8) descriptor on the unitary level while the C–H···O contacts necessitate a R22(4) descriptor on the same level. In total, the molecules are connected to double layers approximately perpendicular to the crystallographic b-axis (Fig. 3). No π-stacking is apparent in the crystal structure.

The packing of the compound is shown in Figure 4.

Experimental

The compound was prepared upon reacting 2-phenoxyacetamide with tert-butyl hypochlorite and iodine according to a published procedure (Glover et al., 1973).

Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.99 Å for the methylene group and C—H 0.95 Å for aromatic carbon atoms) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C). Nitrogen-bound H-atoms were placed in calculated positions (N—H 0.88 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(N).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level).

Fig. 2.

Fig. 2.

Observed distribution of C–N bond lengths in the O=C—NH2 moiety of acetamide derivatives in which the O atom is not acting as a donor atom in coordination compounds (data based on CSD search including all deposited crystal structures up to November 2010).

Fig. 3.

Fig. 3.

Intermolecular contacts, viewed along [0 0 - 1]. Symmetry operators: ix - 1, y, z; ii -x + 1, -y, -z + 1; iii -x + 2, -y, -z + 2; ivx + 1, y, z.

Fig. 4.

Fig. 4.

Molecular packing of the title compound, viewed along [-1 0 0] (anisotropic displacement ellipsoids drawn at 50% probability level).

Crystal data

C8H8INO2 F(000) = 528
Mr = 277.05 Dx = 1.967 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 5293 reflections
a = 5.1411 (4) Å θ = 3.1–28.2°
b = 26.473 (2) Å µ = 3.38 mm1
c = 7.2960 (7) Å T = 200 K
β = 109.564 (3)° Rod, colourless
V = 935.66 (14) Å3 0.55 × 0.18 × 0.10 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer 2282 independent reflections
Radiation source: fine-focus sealed tube 2089 reflections with I > 2σ(I)
graphite Rint = 0.020
φ and ω scans θmax = 28.2°, θmin = 3.1°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −6→6
Tmin = 0.824, Tmax = 1.000 k = −34→35
8332 measured reflections l = −8→9

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120 H-atom parameters constrained
S = 1.29 w = 1/[σ2(Fo2) + (0.0042P)2 + 6.0795P] where P = (Fo2 + 2Fc2)/3
2282 reflections (Δ/σ)max < 0.001
109 parameters Δρmax = 1.50 e Å3
0 restraints Δρmin = −1.58 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
I1 0.81735 (14) 0.20849 (2) −0.25506 (9) 0.0685 (2)
O1 0.6872 (8) 0.01765 (17) 0.7947 (6) 0.0390 (10)
O2 1.0024 (8) 0.08086 (17) 0.4969 (6) 0.0416 (10)
N1 1.1340 (9) 0.0300 (2) 0.8286 (7) 0.0367 (11)
H71 1.1917 0.0152 0.9432 0.044*
H72 1.2543 0.0422 0.7781 0.044*
C1 0.8667 (10) 0.0339 (2) 0.7322 (8) 0.0278 (11)
C2 0.7756 (11) 0.0587 (2) 0.5354 (9) 0.0359 (13)
H21 0.6883 0.0332 0.4343 0.043*
H22 0.6365 0.0850 0.5302 0.043*
C11 0.9411 (12) 0.1079 (2) 0.3245 (9) 0.0345 (12)
C12 1.1409 (13) 0.1428 (2) 0.3187 (10) 0.0399 (14)
H12 1.3013 0.1474 0.4296 0.048*
C13 1.1073 (13) 0.1706 (2) 0.1538 (11) 0.0425 (15)
H13 1.2466 0.1936 0.1489 0.051*
C14 0.8721 (14) 0.1650 (2) −0.0038 (10) 0.0408 (14)
C15 0.6678 (15) 0.1314 (3) 0.0021 (10) 0.0440 (15)
H15 0.5036 0.1281 −0.1069 0.053*
C16 0.7036 (13) 0.1029 (3) 0.1658 (10) 0.0435 (15)
H16 0.5647 0.0797 0.1699 0.052*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
I1 0.0910 (5) 0.0588 (3) 0.0581 (3) −0.0160 (3) 0.0282 (3) 0.0173 (3)
O1 0.0201 (19) 0.062 (3) 0.038 (2) −0.0006 (18) 0.0138 (17) 0.007 (2)
O2 0.027 (2) 0.056 (3) 0.042 (2) −0.0059 (19) 0.0109 (18) 0.014 (2)
N1 0.022 (2) 0.055 (3) 0.035 (3) 0.001 (2) 0.012 (2) 0.011 (2)
C1 0.022 (3) 0.035 (3) 0.029 (3) 0.001 (2) 0.013 (2) −0.001 (2)
C2 0.022 (3) 0.049 (3) 0.038 (3) −0.002 (2) 0.012 (2) 0.003 (3)
C11 0.030 (3) 0.037 (3) 0.041 (3) 0.007 (2) 0.018 (3) 0.010 (2)
C12 0.031 (3) 0.035 (3) 0.051 (4) −0.002 (2) 0.012 (3) 0.005 (3)
C13 0.039 (3) 0.031 (3) 0.063 (4) −0.004 (3) 0.024 (3) 0.008 (3)
C14 0.052 (4) 0.032 (3) 0.046 (4) 0.001 (3) 0.026 (3) 0.000 (3)
C15 0.050 (4) 0.047 (4) 0.035 (3) −0.007 (3) 0.014 (3) −0.001 (3)
C16 0.038 (3) 0.054 (4) 0.044 (4) −0.010 (3) 0.020 (3) 0.000 (3)

Geometric parameters (Å, °)

I1—C14 2.102 (6) C11—C16 1.380 (9)
O1—C1 1.236 (6) C11—C12 1.392 (8)
O2—C11 1.389 (7) C12—C13 1.371 (9)
O2—C2 1.415 (6) C12—H12 0.9500
N1—C1 1.322 (7) C13—C14 1.370 (10)
N1—H71 0.8800 C13—H13 0.9500
N1—H72 0.8800 C14—C15 1.388 (9)
C1—C2 1.503 (8) C15—C16 1.372 (9)
C2—H21 0.9900 C15—H15 0.9500
C2—H22 0.9900 C16—H16 0.9500
C11—O2—C2 116.2 (4) C13—C12—C11 120.3 (6)
C1—N1—H71 120.0 C13—C12—H12 119.8
C1—N1—H72 120.0 C11—C12—H12 119.8
H71—N1—H72 120.0 C14—C13—C12 119.7 (6)
O1—C1—N1 123.2 (5) C14—C13—H13 120.1
O1—C1—C2 118.2 (5) C12—C13—H13 120.1
N1—C1—C2 118.6 (5) C13—C14—C15 120.5 (6)
O2—C2—C1 110.9 (4) C13—C14—I1 119.7 (5)
O2—C2—H21 109.5 C15—C14—I1 119.8 (5)
C1—C2—H21 109.5 C16—C15—C14 119.8 (6)
O2—C2—H22 109.5 C16—C15—H15 120.1
C1—C2—H22 109.5 C14—C15—H15 120.1
H21—C2—H22 108.0 C15—C16—C11 120.0 (6)
C16—C11—O2 125.4 (5) C15—C16—H16 120.0
C16—C11—C12 119.6 (6) C11—C16—H16 120.0
O2—C11—C12 115.1 (5)
C11—O2—C2—C1 −175.7 (5) C12—C13—C14—C15 −0.1 (10)
O1—C1—C2—O2 172.4 (5) C12—C13—C14—I1 179.0 (5)
N1—C1—C2—O2 −8.5 (8) C13—C14—C15—C16 −1.1 (10)
C2—O2—C11—C16 −20.4 (9) I1—C14—C15—C16 179.8 (5)
C2—O2—C11—C12 159.1 (5) C14—C15—C16—C11 0.5 (10)
C16—C11—C12—C13 −2.6 (9) O2—C11—C16—C15 −179.2 (6)
O2—C11—C12—C13 177.9 (6) C12—C11—C16—C15 1.3 (10)
C11—C12—C13—C14 2.0 (10)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H71···O1i 0.88 2.00 2.881 (6) 178
N1—H72···O1ii 0.88 2.28 2.954 (6) 133
C2—H21···O1iii 0.99 2.48 3.422 (8) 158

Symmetry codes: (i) −x+2, −y, −z+2; (ii) x+1, y, z; (iii) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AA2016).

References

  1. Allen, F. H. (2002). Acta Cryst. B58, 380–388. [DOI] [PubMed]
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Bruker (2008). SADABS Bruker Inc., Madison, Wisconsin, USA.
  4. Bruker (2010). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [DOI] [PubMed]
  6. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  7. Glover, S. A., Goosen, A. & Laue, H. A. H. (1973). J. S. Afr. Chem. Inst. 26, 77–81.
  8. Lakshmi Rao, Bh., Seshadri, T. P. & Rao, L. M. (1987). Acta Cryst. C43, 1924–1927.
  9. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  10. Rao, B. L., Seshadri, T. P. & Rao, L. M. (1987). Z. Kristallogr. C180, 37–42.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811025840/aa2016sup1.cif

e-67-o1928-sup1.cif (13.3KB, cif)

Supplementary material file. DOI: 10.1107/S1600536811025840/aa2016Isup2.cdx

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811025840/aa2016Isup3.hkl

e-67-o1928-Isup3.hkl (112.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811025840/aa2016Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES