Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jul 6;67(Pt 8):o1931. doi: 10.1107/S1600536811026146

3,3′-Di-n-propyl-1,1′-[p-phenyl­enebis(methyl­ene)]diimidazolium dibromide

Rosenani A Haque a, S Fatimah Nasri a, Madhukar Hemamalini b, Hoong-Kun Fun b,*,
PMCID: PMC3212318  PMID: 22090975

Abstract

The asymmetric unit of the title compound, C20H28N4 2+·2Br, consists of half a 3,3′-di-n-propyl-1,1′-[p-phenyl­enenis(methyl­ene)]diimidazolium cation and a bromide anion. The cation is located on an inversion center and adopts an ⋯AAAtrans conformation. In the crystal, the cation is linked to the anions via weak C—H⋯Br hydrogen bonds.

Related literature

For details of N-heterocyclic carbenes, see: Herrmann et al. (1998); Zhang & Trudell (2000); Lee et al. (2004). For structures with similar ⋯AAA⋯ trans conformations, see: Chen et al. (2007); Cheng et al. (2009).graphic file with name e-67-o1931-scheme1.jpg

Experimental

Crystal data

  • C20H28N4 2+·2Br

  • M r = 484.28

  • Monoclinic, Inline graphic

  • a = 8.9420 (2) Å

  • b = 11.2443 (2) Å

  • c = 11.3536 (2) Å

  • β = 109.716 (1)°

  • V = 1074.64 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.78 mm−1

  • T = 296 K

  • 0.37 × 0.35 × 0.30 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.338, T max = 0.397

  • 11799 measured reflections

  • 3127 independent reflections

  • 2409 reflections with I > 2σ(I)

  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.030

  • wR(F 2) = 0.078

  • S = 1.04

  • 3127 reflections

  • 118 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.59 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811026146/lh5273sup1.cif

e-67-o1931-sup1.cif (15.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811026146/lh5273Isup2.hkl

e-67-o1931-Isup2.hkl (150.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811026146/lh5273Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7A⋯Br1 0.93 2.77 3.6222 (18) 152

Acknowledgments

RAH and SFN thank Universiti Sains Malaysia (USM) for the FRGS fund (203/PKIMIA/671115), a short term grant (304/PKIMIA/639001) and an RU grant (1001/PKIMIA/813023). HKF and MH thank the Malaysian Government and USM for the Research University Grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

supplementary crystallographic information

Comment

N-Heterocyclic carbene (NHC) ligands have been shown to have wide applicability in coordination chemistry and catalysis. Current research efforts are devoted to the discovery of efficient metal NHC catalysts. For example, chelating palladium complexes of bis(NHC) carbenes have been found to be efficient catalysts in C–C coupling reactions (Herrmann et al., 1998; Zhang & Trudell, 2000). NHC ligands are generally accessible via the deprotonation of imidazolium salts. The preparation of chelating bis(NHC) ligands are also receiving much attention, since they can provide extra air and moisture stability for the metal centers. Several bis(imidazolium) halides, as bis(NHC) ligand precursors, have been synthesized and structurally characterized by us (Lee et al., 2004). We report here the structure of 3,3'-Di-n-propyl-1,1'-(p- phenylenedimethylene)diimidazolium dibromide, (I).

The asymmetric unit of the title compound, consists of a half of the 3,3'-Di-n-propyl-1,1'-(p-phenylenedimethylene) diimidazolium cation (located on a crystallographic inversion center) and a bromide anion (Fig. 1). The cation adopts the ···AAA··· trans conformation in the solid state. This conformation is the same as that found for the neutral N1,N2-di(2-pyridyl)adipoamide ligand which cocrystallizes with water and 2-{5-[N-(2-Pyridyl)carbamoyl]pentanamido} pyridinium hexafluorophosphate (Chen et al., 2007; Cheng et al., 2009).

In the crystal structure (Fig.2), the cations and anions are linked via C7—H7A···Br1 (Table 1) hydrogen bonds.

Experimental

To a solution of 1,4-bis((1H-imidazol-1-yl)methyl)benzene (1.0 g, 4.2 mmol) in 15 ml of acetonitrile, 1-bromopropane (1.0 g, 8.4 mmol) was added. The mixture was refluxed at 363 K for 24 h. The resulting white precipitate was filtered, washed with fresh acetonitrile (2 X 3 ml) and recrystallised from methanol to give colorless crystals. Yield :1.3 g, (93%); m.p: 521–523 K. Crystals suitable for X-ray diffraction studies were obtained by slow evaporation of the salt solution in methanol at ambient temperature.

Refinement

All hydrogen atoms were positioned geometrically [C–H = 0.93–0.97 Å] and were refined using a riding model, with Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating group model was applied to the methyl groups.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 50% probability displacement ellipsoids. Only the unique anion is shown (symmetry code (A): -x, -y+1, -z+1).

Fig. 2.

Fig. 2.

The crystal packing of the title compound, showing weak hydrogen bonds as dashed lines.

Crystal data

C20H28N42+·2Br F(000) = 492
Mr = 484.28 Dx = 1.497 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 4287 reflections
a = 8.9420 (2) Å θ = 2.4–29.8°
b = 11.2443 (2) Å µ = 3.78 mm1
c = 11.3536 (2) Å T = 296 K
β = 109.716 (1)° Block, colourless
V = 1074.64 (4) Å3 0.37 × 0.35 × 0.30 mm
Z = 2

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 3127 independent reflections
Radiation source: fine-focus sealed tube 2409 reflections with I > 2σ(I)
graphite Rint = 0.030
φ and ω scans θmax = 30.1°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −12→12
Tmin = 0.338, Tmax = 0.397 k = −15→15
11799 measured reflections l = −11→16

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0366P)2 + 0.234P] where P = (Fo2 + 2Fc2)/3
3127 reflections (Δ/σ)max < 0.001
118 parameters Δρmax = 0.30 e Å3
0 restraints Δρmin = −0.59 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.24338 (3) 0.428391 (17) 0.069769 (19) 0.04870 (9)
N1 0.06730 (17) 0.72483 (12) 0.28704 (13) 0.0340 (3)
N2 0.28760 (18) 0.76133 (14) 0.25525 (15) 0.0389 (3)
C1 −0.0905 (2) 0.60075 (16) 0.49714 (17) 0.0358 (4)
H1A −0.1508 0.6684 0.4960 0.043*
C2 0.0537 (2) 0.47667 (16) 0.40181 (16) 0.0350 (4)
H2A 0.0907 0.4608 0.3360 0.042*
C3 −0.03759 (19) 0.57747 (14) 0.39781 (16) 0.0316 (3)
C4 −0.0764 (2) 0.66197 (17) 0.28836 (18) 0.0383 (4)
H4A −0.1216 0.6179 0.2110 0.046*
H4B −0.1547 0.7193 0.2941 0.046*
C5 0.1346 (2) 0.82204 (16) 0.35896 (17) 0.0401 (4)
H5A 0.0933 0.8639 0.4116 0.048*
C6 0.2712 (2) 0.84497 (16) 0.33885 (18) 0.0427 (4)
H6A 0.3420 0.9061 0.3747 0.051*
C7 0.1620 (2) 0.68965 (16) 0.22476 (17) 0.0370 (4)
H7A 0.1434 0.6259 0.1695 0.044*
C8 0.4185 (2) 0.75295 (18) 0.2048 (2) 0.0456 (4)
H8A 0.4123 0.6772 0.1625 0.055*
H8B 0.5189 0.7557 0.2732 0.055*
C9 0.4132 (2) 0.85232 (19) 0.1143 (2) 0.0469 (5)
H9A 0.4181 0.9283 0.1558 0.056*
H9B 0.3139 0.8488 0.0446 0.056*
C10 0.5517 (3) 0.8419 (2) 0.0657 (2) 0.0586 (6)
H10A 0.5471 0.9058 0.0085 0.088*
H10B 0.5457 0.7672 0.0234 0.088*
H10C 0.6499 0.8462 0.1347 0.088*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.06110 (15) 0.03539 (11) 0.05110 (14) 0.00544 (9) 0.02086 (10) 0.00409 (8)
N1 0.0411 (8) 0.0308 (7) 0.0319 (7) −0.0010 (6) 0.0149 (6) 0.0013 (6)
N2 0.0424 (8) 0.0354 (7) 0.0417 (9) −0.0021 (6) 0.0176 (7) −0.0004 (6)
C1 0.0370 (9) 0.0318 (8) 0.0416 (10) 0.0037 (7) 0.0173 (8) 0.0001 (7)
C2 0.0386 (9) 0.0355 (8) 0.0352 (9) 0.0020 (7) 0.0181 (8) −0.0010 (7)
C3 0.0301 (8) 0.0311 (8) 0.0337 (8) −0.0039 (6) 0.0109 (7) 0.0001 (7)
C4 0.0357 (9) 0.0406 (9) 0.0382 (10) −0.0003 (7) 0.0119 (7) 0.0036 (8)
C5 0.0552 (11) 0.0329 (8) 0.0333 (9) 0.0016 (8) 0.0165 (8) −0.0023 (7)
C6 0.0522 (11) 0.0349 (9) 0.0397 (10) −0.0072 (8) 0.0138 (9) −0.0035 (8)
C7 0.0456 (10) 0.0319 (8) 0.0361 (9) −0.0015 (7) 0.0171 (8) −0.0009 (7)
C8 0.0416 (10) 0.0456 (10) 0.0545 (12) 0.0018 (8) 0.0224 (9) 0.0055 (9)
C9 0.0471 (11) 0.0496 (11) 0.0484 (11) 0.0004 (9) 0.0219 (9) 0.0047 (9)
C10 0.0566 (13) 0.0693 (15) 0.0598 (14) −0.0037 (11) 0.0326 (11) 0.0048 (12)

Geometric parameters (Å, °)

N1—C7 1.333 (2) C4—H4B 0.9700
N1—C5 1.376 (2) C5—C6 1.341 (3)
N1—C4 1.471 (2) C5—H5A 0.9300
N2—C7 1.330 (2) C6—H6A 0.9300
N2—C6 1.379 (2) C7—H7A 0.9300
N2—C8 1.470 (2) C8—C9 1.508 (3)
C1—C3 1.387 (2) C8—H8A 0.9700
C1—C2i 1.388 (3) C8—H8B 0.9700
C1—H1A 0.9300 C9—C10 1.521 (3)
C2—C1i 1.388 (3) C9—H9A 0.9700
C2—C3 1.389 (2) C9—H9B 0.9700
C2—H2A 0.9300 C10—H10A 0.9600
C3—C4 1.509 (2) C10—H10B 0.9600
C4—H4A 0.9700 C10—H10C 0.9600
C7—N1—C5 108.76 (15) C5—C6—N2 107.47 (16)
C7—N1—C4 125.17 (15) C5—C6—H6A 126.3
C5—N1—C4 125.78 (14) N2—C6—H6A 126.3
C7—N2—C6 108.44 (15) N2—C7—N1 108.29 (15)
C7—N2—C8 124.99 (16) N2—C7—H7A 125.9
C6—N2—C8 126.56 (16) N1—C7—H7A 125.9
C3—C1—C2i 120.18 (16) N2—C8—C9 111.85 (16)
C3—C1—H1A 119.9 N2—C8—H8A 109.2
C2i—C1—H1A 119.9 C9—C8—H8A 109.2
C1i—C2—C3 120.77 (16) N2—C8—H8B 109.2
C1i—C2—H2A 119.6 C9—C8—H8B 109.2
C3—C2—H2A 119.6 H8A—C8—H8B 107.9
C1—C3—C2 119.05 (16) C8—C9—C10 110.34 (17)
C1—C3—C4 120.26 (15) C8—C9—H9A 109.6
C2—C3—C4 120.68 (15) C10—C9—H9A 109.6
N1—C4—C3 110.61 (14) C8—C9—H9B 109.6
N1—C4—H4A 109.5 C10—C9—H9B 109.6
C3—C4—H4A 109.5 H9A—C9—H9B 108.1
N1—C4—H4B 109.5 C9—C10—H10A 109.5
C3—C4—H4B 109.5 C9—C10—H10B 109.5
H4A—C4—H4B 108.1 H10A—C10—H10B 109.5
C6—C5—N1 107.04 (16) C9—C10—H10C 109.5
C6—C5—H5A 126.5 H10A—C10—H10C 109.5
N1—C5—H5A 126.5 H10B—C10—H10C 109.5
C2i—C1—C3—C2 −0.7 (3) N1—C5—C6—N2 −0.3 (2)
C2i—C1—C3—C4 −179.54 (16) C7—N2—C6—C5 0.5 (2)
C1i—C2—C3—C1 0.7 (3) C8—N2—C6—C5 179.06 (17)
C1i—C2—C3—C4 179.54 (16) C6—N2—C7—N1 −0.4 (2)
C7—N1—C4—C3 92.7 (2) C8—N2—C7—N1 −179.02 (16)
C5—N1—C4—C3 −80.3 (2) C5—N1—C7—N2 0.2 (2)
C1—C3—C4—N1 110.19 (18) C4—N1—C7—N2 −173.88 (15)
C2—C3—C4—N1 −68.6 (2) C7—N2—C8—C9 107.5 (2)
C7—N1—C5—C6 0.1 (2) C6—N2—C8—C9 −70.9 (2)
C4—N1—C5—C6 174.13 (16) N2—C8—C9—C10 179.05 (18)

Symmetry codes: (i) −x, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C7—H7A···Br1 0.93 2.77 3.6222 (18) 152

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5273).

References

  1. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Chen, H.-C., Hu, H.-L., Chan, Z.-K., Yeh, C.-W., Jia, H.-W., Wu, C.-P., Chen, J.-D. & Wang, J.-C. (2007). Cryst. Growth Des. 7, 698–704.
  3. Cheng, P.-C., Wu, C.-J., Chen, H.-C., Chen, J.-D. & Wang, J.-C. (2009). Acta Cryst. E65, o1825. [DOI] [PMC free article] [PubMed]
  4. Herrmann, W. A., Reisinger, C.-P. & Spiegler, M. (1998). J. Organomet. Chem. 557, 93–96.
  5. Lee, H. M., Lu, C. Y., Chen, C. Y., Chen, W. L., Lin, H. C., Chiu, P. L. & Cheng, P. Y. (2004). Tetrahedron, 60, 5807–5825.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  8. Zhang, C. & Trudell, M. L. (2000). Tetrahedron Lett. 41, 595–598.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811026146/lh5273sup1.cif

e-67-o1931-sup1.cif (15.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811026146/lh5273Isup2.hkl

e-67-o1931-Isup2.hkl (150.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811026146/lh5273Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES