Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jul 6;67(Pt 8):o1935. doi: 10.1107/S1600536811026171

2-(m-Tol­yloxy)benzoic acid

Zhi-Fang Zhang a,*
PMCID: PMC3212322  PMID: 22090979

Abstract

In the crystal structure of the title compound, C14H12O3, the mol­ecules form classical O—H⋯O hydrogen-bonded carb­oxy­lic acid dimers. The dihedral angle between the two rings is 80.9 (3)°.

Related literature

For related structures, see: Shi et al. (2011); Raghunathan et al. (1982); Zhang (2011). For the synthesis of the title compound, see: Pellon et al. (1995). For bond-length data, see: Allen et al. (1987).graphic file with name e-67-o1935-scheme1.jpg

Experimental

Crystal data

  • C14H12O3

  • M r = 228.24

  • Triclinic, Inline graphic

  • a = 5.193 (1) Å

  • b = 7.8000 (16) Å

  • c = 14.868 (3) Å

  • α = 94.28 (3)°

  • β = 97.50 (3)°

  • γ = 102.54 (3)°

  • V = 579.5 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.982, T max = 0.991

  • 2387 measured reflections

  • 2132 independent reflections

  • 1132 reflections with I > 2σ(I)

  • R int = 0.030

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.052

  • wR(F 2) = 0.116

  • S = 1.00

  • 2132 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.12 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811026171/hg5059sup1.cif

e-67-o1935-sup1.cif (15.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811026171/hg5059Isup2.hkl

e-67-o1935-Isup2.hkl (104.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811026171/hg5059Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3B⋯O2i 0.82 1.83 2.648 (2) 176

Symmetry code: (i) Inline graphic.

Acknowledgments

The author gratefully acknowledges financial support from the Scientific Research Foundation for High-Level Personnel, Yulin University (11 GK03) and the Collaboration Programs of Yulin City and Universities and thanks Professor Hua-Qin Wang of the Analysis Center, Nanjing University, for providing the Enraf–Nonius CAD-4 diffractometer and data set for this research project.

supplementary crystallographic information

Comment

Diphenylethers areuseful as herbicides, ignifuges, antiinflammatories and also as intermediatesin the synthesis of xanthones, p-dibenzo-furans, and p-dibenzo-dioxines (Pellon, et al., 1995). Knowledge of the crystal structure of such benzoic acid derivatives gives us not only information about nuclearity of the complex molecule, but is important in understanding the behaviour of these compounds with respect to the mechanisms of pharmacological activities and physiological activities. Therefore, we have synthesized the title compound, (I), and report its crystal structure here.

The molecular structure of (I) is shown in Fig. 1, and the intermolecular O—H···O hydrogen bond (Table 1) results in the formation of carboxylic acid dimers (Fig. 2). The bond lengths are within normal ranges (Allen et al., 1987). Similar crystal structure of some compounds have been reported (Shi et al., 2011; Raghunathan et al., 1982; Zhang et al.., 2011).

In the molecule of (I), the dihedral angle of the rings( C3—C6) and (C8—C13) is 80.9 (3)°, the molecules were connected together via O—H···O intermolecular hydrogen bonds to form dimers, which seems to be very effective in the stabilization of the crystal structure.

Experimental

The title compound, (I), was prepared by the method of Ullmann condensation reaction reported in literature (Pellon et al., 1995). A mixture of 2-chlorobenzoic acid (6.26 g; 0.04 mol), m-cresol (8.65 g; 0.08 mol), anhydrous K2CO3 (11.04 g; 0.08 mol), pyridine (1.58 g; 0.02 mol), Cu powder (0.2 g) and cuprous iodide (0.2 g) in 25 ml water was kept at reflux for two hours. The mixture was then basified with Na2CO3 solution and extracted with diethyl ether. The aqueous solution was acidified with HCl, the precipitated solid was filtered off and disolved in NaOH; the basic solution was filtered (charcoal) and acidified with acetic acid. The 2-(3-tolyloxy)benzoic acid was crystalized from the mixture.

Refinement

H atoms were positioned geometrically and refined as riding groups, with O—H = 0.82 and C—H = 0.93 Å for aromatic H, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.2 for aromatic H, and x = 1.5 for other H.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) (thermal ellipsoids are shown at 30% probability levels).

Fig. 2.

Fig. 2.

The structure of a dimer of (I).

Crystal data

C14H12O3 Z = 2
Mr = 228.24 F(000) = 240
Triclinic, P1 Dx = 1.308 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 5.193 (1) Å Cell parameters from 25 reflections
b = 7.8000 (16) Å θ = 9–12°
c = 14.868 (3) Å µ = 0.09 mm1
α = 94.28 (3)° T = 293 K
β = 97.50 (3)° Block, colourless
γ = 102.54 (3)° 0.20 × 0.20 × 0.10 mm
V = 579.5 (2) Å3

Data collection

Enraf–Nonius CAD-4 diffractometer 1132 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.030
graphite θmax = 25.4°, θmin = 1.4°
ω/2θ scans h = 0→6
Absorption correction: ψ scan (North et al., 1968) k = −9→9
Tmin = 0.982, Tmax = 0.991 l = −17→17
2387 measured reflections 3 standard reflections every 200 reflections
2132 independent reflections intensity decay: 1%

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.040P)2] where P = (Fo2 + 2Fc2)/3
2132 reflections (Δ/σ)max < 0.001
155 parameters Δρmax = 0.12 e Å3
0 restraints Δρmin = −0.12 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.3075 (4) 0.93730 (19) 0.80140 (11) 0.0780 (6)
C1 0.1740 (8) 0.8008 (4) 0.4694 (2) 0.1111 (12)
H1A 0.3613 0.8039 0.4758 0.167*
H1B 0.1429 0.9087 0.4479 0.167*
H1C 0.0778 0.7027 0.4264 0.167*
O2 0.7293 (3) 0.95411 (19) 0.92424 (11) 0.0683 (6)
C2 0.0798 (7) 0.7808 (3) 0.56045 (19) 0.0694 (8)
O3 0.9363 (3) 1.21756 (19) 0.99325 (11) 0.0706 (6)
H3B 1.0355 1.1598 1.0172 0.106*
C3 0.2341 (6) 0.8720 (3) 0.63921 (19) 0.0660 (8)
H3A 0.3994 0.9455 0.6366 0.079*
C4 0.1428 (6) 0.8542 (3) 0.72192 (19) 0.0617 (8)
C5 −0.0968 (6) 0.7484 (3) 0.7283 (2) 0.0720 (8)
H5A −0.1568 0.7396 0.7844 0.086*
C6 −0.2495 (6) 0.6544 (4) 0.6507 (2) 0.0856 (10)
H6A −0.4126 0.5789 0.6539 0.103*
C7 −0.1597 (7) 0.6725 (4) 0.5675 (2) 0.0826 (10)
H7A −0.2652 0.6092 0.5151 0.099*
C8 0.3485 (5) 1.1181 (3) 0.81945 (15) 0.0519 (7)
C9 0.1781 (5) 1.2089 (3) 0.77587 (16) 0.0640 (8)
H9A 0.0352 1.1490 0.7324 0.077*
C10 0.2199 (6) 1.3888 (3) 0.79684 (17) 0.0673 (8)
H10A 0.1049 1.4500 0.7672 0.081*
C11 0.4270 (6) 1.4776 (3) 0.86027 (17) 0.0671 (8)
H11A 0.4544 1.5992 0.8737 0.081*
C12 0.5958 (5) 1.3877 (3) 0.90456 (16) 0.0580 (7)
H12A 0.7366 1.4495 0.9482 0.070*
C13 0.5610 (5) 1.2048 (3) 0.88546 (14) 0.0459 (6)
C14 0.7462 (5) 1.1132 (3) 0.93547 (15) 0.0488 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.1006 (15) 0.0443 (9) 0.0743 (12) 0.0174 (10) −0.0369 (12) −0.0027 (9)
C1 0.168 (4) 0.092 (2) 0.081 (2) 0.049 (2) 0.014 (2) 0.0103 (19)
O2 0.0736 (13) 0.0455 (9) 0.0766 (12) 0.0160 (9) −0.0205 (10) −0.0042 (8)
C2 0.089 (2) 0.0538 (16) 0.0635 (19) 0.0329 (17) −0.0149 (18) −0.0047 (14)
O3 0.0756 (13) 0.0522 (10) 0.0735 (12) 0.0157 (10) −0.0223 (11) −0.0048 (9)
C3 0.070 (2) 0.0504 (15) 0.0723 (19) 0.0160 (14) −0.0116 (17) 0.0070 (14)
C4 0.0639 (19) 0.0383 (13) 0.0723 (19) 0.0136 (13) −0.0245 (16) −0.0067 (13)
C5 0.070 (2) 0.0588 (16) 0.084 (2) 0.0207 (16) 0.0002 (18) −0.0067 (15)
C6 0.066 (2) 0.0715 (19) 0.108 (3) 0.0098 (17) −0.007 (2) −0.014 (2)
C7 0.081 (2) 0.0577 (17) 0.095 (3) 0.0232 (18) −0.036 (2) −0.0216 (17)
C8 0.0642 (17) 0.0412 (12) 0.0474 (14) 0.0131 (13) −0.0009 (13) −0.0003 (11)
C9 0.0706 (19) 0.0557 (15) 0.0618 (17) 0.0210 (14) −0.0129 (15) 0.0011 (13)
C10 0.081 (2) 0.0549 (16) 0.0689 (18) 0.0288 (15) 0.0007 (17) 0.0041 (14)
C11 0.083 (2) 0.0448 (14) 0.0751 (19) 0.0217 (15) 0.0086 (17) 0.0025 (14)
C12 0.0656 (18) 0.0453 (13) 0.0589 (16) 0.0100 (13) 0.0028 (14) −0.0012 (12)
C13 0.0534 (15) 0.0438 (13) 0.0387 (13) 0.0108 (12) 0.0019 (12) 0.0040 (10)
C14 0.0523 (16) 0.0449 (13) 0.0446 (14) 0.0053 (13) 0.0035 (12) −0.0012 (11)

Geometric parameters (Å, °)

O1—C8 1.380 (2) C5—H5A 0.9300
O1—C4 1.389 (3) C6—C7 1.384 (4)
C1—C2 1.506 (4) C6—H6A 0.9300
C1—H1A 0.9600 C7—H7A 0.9300
C1—H1B 0.9600 C8—C9 1.377 (3)
C1—H1C 0.9600 C8—C13 1.390 (3)
O2—C14 1.222 (2) C9—C10 1.378 (3)
C2—C7 1.365 (4) C9—H9A 0.9300
C2—C3 1.380 (3) C10—C11 1.357 (3)
O3—C14 1.304 (2) C10—H10A 0.9300
O3—H3B 0.8200 C11—C12 1.371 (3)
C3—C4 1.380 (3) C11—H11A 0.9300
C3—H3A 0.9300 C12—C13 1.401 (3)
C4—C5 1.355 (4) C12—H12A 0.9300
C5—C6 1.371 (3) C13—C14 1.476 (3)
C8—O1—C4 118.75 (17) C2—C7—H7A 119.2
C2—C1—H1A 109.5 C6—C7—H7A 119.2
C2—C1—H1B 109.5 C9—C8—O1 121.0 (2)
H1A—C1—H1B 109.5 C9—C8—C13 121.0 (2)
C2—C1—H1C 109.5 O1—C8—C13 118.0 (2)
H1A—C1—H1C 109.5 C8—C9—C10 119.8 (2)
H1B—C1—H1C 109.5 C8—C9—H9A 120.1
C7—C2—C3 118.2 (3) C10—C9—H9A 120.1
C7—C2—C1 121.2 (3) C11—C10—C9 120.7 (2)
C3—C2—C1 120.7 (3) C11—C10—H10A 119.7
C14—O3—H3B 109.5 C9—C10—H10A 119.7
C2—C3—C4 119.9 (3) C10—C11—C12 119.9 (2)
C2—C3—H3A 120.1 C10—C11—H11A 120.1
C4—C3—H3A 120.1 C12—C11—H11A 120.1
C5—C4—C3 121.6 (3) C11—C12—C13 121.4 (2)
C5—C4—O1 118.9 (3) C11—C12—H12A 119.3
C3—C4—O1 119.3 (3) C13—C12—H12A 119.3
C4—C5—C6 118.9 (3) C8—C13—C12 117.2 (2)
C4—C5—H5A 120.5 C8—C13—C14 123.17 (19)
C6—C5—H5A 120.5 C12—C13—C14 119.6 (2)
C5—C6—C7 119.7 (3) O2—C14—O3 121.7 (2)
C5—C6—H6A 120.2 O2—C14—C13 124.1 (2)
C7—C6—H6A 120.2 O3—C14—C13 114.12 (19)
C2—C7—C6 121.7 (3)
C7—C2—C3—C4 −0.9 (4) C13—C8—C9—C10 0.9 (4)
C1—C2—C3—C4 179.0 (2) C8—C9—C10—C11 −0.2 (4)
C2—C3—C4—C5 0.0 (4) C9—C10—C11—C12 −0.4 (4)
C2—C3—C4—O1 175.7 (2) C10—C11—C12—C13 0.4 (4)
C8—O1—C4—C5 −110.5 (3) C9—C8—C13—C12 −0.9 (3)
C8—O1—C4—C3 73.7 (3) O1—C8—C13—C12 −178.5 (2)
C3—C4—C5—C6 1.3 (4) C9—C8—C13—C14 178.8 (2)
O1—C4—C5—C6 −174.5 (2) O1—C8—C13—C14 1.2 (3)
C4—C5—C6—C7 −1.6 (4) C11—C12—C13—C8 0.2 (4)
C3—C2—C7—C6 0.6 (4) C11—C12—C13—C14 −179.4 (2)
C1—C2—C7—C6 −179.3 (3) C8—C13—C14—O2 −0.6 (4)
C5—C6—C7—C2 0.7 (4) C12—C13—C14—O2 179.0 (2)
C4—O1—C8—C9 18.2 (4) C8—C13—C14—O3 178.6 (2)
C4—O1—C8—C13 −164.2 (2) C12—C13—C14—O3 −1.8 (3)
O1—C8—C9—C10 178.4 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O3—H3B···O2i 0.82 1.83 2.648 (2) 176

Symmetry codes: (i) −x+2, −y+2, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5059).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Enraf–Nonius (1985). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  3. Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  4. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  5. Pellon, R. F., Carrasco, R., Millian, V. & Rodes, L. (1995). Synth. Commun. 25, 1077–1083.
  6. Raghunathan, S., Chandrasekhar, K. & Pattabhi, V. (1982). Acta Cryst. B38, 2536–2538.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Shi, L., Zhang, Q., Xiao, Q., Wu, T. & Zhu, H.-J. (2011). Acta Cryst. E67, o748. [DOI] [PMC free article] [PubMed]
  9. Zhang, Z.-F. (2011). Acta Cryst. E67, o1078. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811026171/hg5059sup1.cif

e-67-o1935-sup1.cif (15.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811026171/hg5059Isup2.hkl

e-67-o1935-Isup2.hkl (104.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811026171/hg5059Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES