Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jul 6;67(Pt 8):o1936. doi: 10.1107/S1600536811026158

Methyl 2-{[(2-fur­yl)(3-methyl-5-oxo-1-phenyl-4,5-dihydro-1H-pyrazol-4-yl­idene)meth­yl]amino}­acetate

Xiao Han a,*, Xiao-Dong Yang a, Xiao-Chang Dai a
PMCID: PMC3212323  PMID: 22090980

Abstract

In the title compound, C18H17N3O4, the amino group of the glycine methyl ester fragment is involved in an intra­molecular N—H⋯O hydrogen bond. The phenyl and furyl rings form dihedral angles of 10.20 (4) and 54.56°, respectively, with the pyrazole ring. In the crystal, mol­ecules related by translation along the b axis are linked into chains via weak inter­molecular C—H⋯O hydrogen bonds.

Related literature

For a related structure, see: Zhang et al. (2007). For details of the synthesis, see: Jensen (1959). For applications of pyrazol­one derivatives in coordination chemistry, see: Casas et al. (2007). For the anti­bacterial activity of pyrazolone derivatives, see: Li et al. (2000); Zhang et al. (2008).graphic file with name e-67-o1936-scheme1.jpg

Experimental

Crystal data

  • C18H17N3O4

  • M r = 339.35

  • Triclinic, Inline graphic

  • a = 7.499 (4) Å

  • b = 9.503 (5) Å

  • c = 11.749 (6) Å

  • α = 96.712 (7)°

  • β = 91.654 (8)°

  • γ = 90.337 (7)°

  • V = 831.2 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 295 K

  • 0.48 × 0.14 × 0.08 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • 6492 measured reflections

  • 2915 independent reflections

  • 1805 reflections with I > 2σ(I)

  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.051

  • wR(F 2) = 0.150

  • S = 1.01

  • 29015 reflections

  • 232 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2005); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811026158/cv5123sup1.cif

e-67-o1936-sup1.cif (19.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811026158/cv5123Isup2.hkl

e-67-o1936-Isup2.hkl (142.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811026158/cv5123Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O1 0.97 (3) 1.89 (3) 2.704 (3) 140 (2)
C14—H14⋯O1i 0.93 2.48 3.386 (4) 164

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors gratefully acknowledge financial support from the study on structure–activity relationships of helicid analogues.

supplementary crystallographic information

Comment

Pyrazolones constitute an important class of heterocycles due to their properties and applications (Casas et al., 2007). Schiff bases derived from 1-phenyl-3-methyl-4-(2-furoyl)-5-pyrazolone (PMFP) have found extensive application in coordination chemistry and due to their antibacterial activity (Zhang et al., 2007, 2008; Li et al., 2000). In order to expand this field, we present here the title compound (I).

In (I) (Fig. 1), the phenyl ring (C1-C6) is twisted at 10.20 (4)° from the mean plane of pyrazole ring. The pyrazole ring and the O1/C10/C9/C11/N3 mean form a dihedral angle of 5.62 (4)°. The bond length of C9—C11(1.390 (3) Å) between the usual C—C and C=C bonds indicates the delocalization of the electrons. Strong intramolecular hydrogen bond N3—H3A···O1(Table 1) is indicative of the enamine-keto form.

In the crystal structure, molecules related by translation along axis b are linked into chains via weak intermolecular C—H···O hydrogen bonds.

Experimental

PMFP was synthesized according to the method proposed by Jensen (1959). A mixture of a 10 ml PMFP (2 mmol, 0.5366 g) anhydrous ethanol solution, and 10 ml Glycine methyl ester hydrochloride anhydrous ethanol solution (2 mmol, 0.2511 g)solution was refluxed for ca.7 h, adding a few drops of glacial acetic acid as a catalyst. Then ethanol was removed by evaporation and the resulting black precipitate formed was filtered off, washed with cold anhydrous ethanol and dried in air. Black block single crystals suitable for analysis were obtained by slowly evaporation of a solution in anhydrous ethanol at room temperature for a few days.

Refinement

H atoms bonded to N3 was located in a difference map and isotropically refined. Other H atoms were placed in calculated positions [C—H 0.93-0.97 Å], and refined as riding, with Uiso(H)=1.2-1.5 Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) showing the atomic numbering and 30% probability displacement ellipsoids. Dotted line indicates hydrogen bond.

Crystal data

C18H17N3O4 Z = 2
Mr = 339.35 F(000) = 356
Triclinic, P1 Dx = 1.356 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.499 (4) Å Cell parameters from 1502 reflections
b = 9.503 (5) Å θ = 2.9–22.6°
c = 11.749 (6) Å µ = 0.10 mm1
α = 96.712 (7)° T = 295 K
β = 91.654 (8)° Block, black
γ = 90.337 (7)° 0.48 × 0.14 × 0.08 mm
V = 831.2 (7) Å3

Data collection

Bruker APEXII CCD diffractometer 1805 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.034
graphite θmax = 25.0°, θmin = 2.6°
phi and ω scans h = −8→8
6492 measured reflections k = −11→11
2915 independent reflections l = −13→13

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.150 H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0826P)2] where P = (Fo2 + 2Fc2)/3
2915 reflections (Δ/σ)max < 0.001
232 parameters Δρmax = 0.17 e Å3
0 restraints Δρmin = −0.21 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.2043 (3) 0.1986 (3) 0.7105 (2) 0.0509 (6)
C2 0.1118 (4) 0.1820 (3) 0.6063 (3) 0.0697 (8)
H2 0.0454 0.1000 0.5838 0.084*
C3 0.1192 (5) 0.2881 (4) 0.5362 (3) 0.0888 (10)
H3 0.0555 0.2778 0.4666 0.107*
C4 0.2192 (5) 0.4093 (4) 0.5672 (3) 0.0848 (10)
H4 0.2235 0.4799 0.5188 0.102*
C5 0.3120 (4) 0.4247 (3) 0.6696 (3) 0.0725 (8)
H5 0.3797 0.5064 0.6909 0.087*
C6 0.3064 (4) 0.3203 (3) 0.7418 (2) 0.0599 (7)
H6 0.3707 0.3313 0.8112 0.072*
C7 0.0294 (4) −0.2611 (3) 0.8061 (2) 0.0648 (8)
H7A −0.0553 −0.2639 0.7430 0.097*
H7B −0.0311 −0.2784 0.8741 0.097*
H7C 0.1178 −0.3325 0.7892 0.097*
C8 0.1184 (3) −0.1175 (2) 0.8250 (2) 0.0493 (6)
C9 0.2063 (3) −0.0467 (2) 0.9256 (2) 0.0446 (6)
C10 0.2473 (3) 0.0934 (2) 0.8965 (2) 0.0464 (6)
C11 0.2438 (3) −0.0855 (2) 1.0341 (2) 0.0461 (6)
C12 0.2315 (3) −0.2330 (2) 1.0582 (2) 0.0507 (6)
C13 0.2946 (3) −0.3534 (2) 1.0035 (2) 0.0605 (7)
H13 0.3546 −0.3628 0.9349 0.073*
C14 0.2530 (4) −0.4631 (3) 1.0695 (3) 0.0741 (9)
H14 0.2804 −0.5585 1.0534 0.089*
C15 0.1673 (4) −0.4029 (3) 1.1587 (3) 0.0827 (10)
H15 0.1234 −0.4516 1.2163 0.099*
C16 0.6100 (4) 0.1991 (3) 1.4644 (3) 0.0859 (10)
H16A 0.7236 0.2106 1.4309 0.129*
H16B 0.6277 0.1728 1.5403 0.129*
H16C 0.5461 0.2867 1.4681 0.129*
C17 0.4484 (3) 0.1167 (3) 1.2930 (2) 0.0533 (6)
C18 0.3474 (3) −0.0089 (2) 1.2339 (2) 0.0538 (7)
H18A 0.4205 −0.0928 1.2334 0.065*
H18B 0.2405 −0.0242 1.2756 0.065*
H3A 0.309 (3) 0.107 (3) 1.094 (2) 0.065 (8)*
N1 0.1955 (2) 0.09022 (19) 0.78289 (18) 0.0501 (5)
N2 0.1101 (3) −0.0388 (2) 0.74126 (18) 0.0540 (6)
N3 0.2991 (3) 0.0135 (2) 1.11800 (17) 0.0498 (5)
O1 0.3157 (2) 0.19626 (16) 0.95855 (14) 0.0587 (5)
O2 0.1511 (3) −0.26029 (18) 1.15579 (17) 0.0717 (6)
O3 0.4695 (3) 0.22735 (19) 1.25441 (17) 0.0740 (6)
O4 0.5077 (2) 0.08888 (19) 1.39454 (17) 0.0684 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0540 (14) 0.0451 (14) 0.0541 (16) 0.0075 (11) 0.0107 (12) 0.0048 (12)
C2 0.0727 (18) 0.0695 (19) 0.067 (2) −0.0029 (15) −0.0007 (16) 0.0103 (16)
C3 0.099 (2) 0.098 (3) 0.073 (2) 0.001 (2) −0.0079 (19) 0.029 (2)
C4 0.103 (2) 0.071 (2) 0.086 (3) 0.0040 (19) 0.010 (2) 0.0325 (19)
C5 0.090 (2) 0.0497 (17) 0.079 (2) 0.0030 (15) 0.0129 (18) 0.0110 (15)
C6 0.0764 (18) 0.0431 (15) 0.0602 (17) 0.0008 (13) 0.0075 (14) 0.0051 (13)
C7 0.0724 (17) 0.0433 (15) 0.0753 (19) −0.0130 (13) 0.0006 (15) −0.0057 (13)
C8 0.0486 (14) 0.0396 (13) 0.0582 (16) 0.0015 (11) 0.0102 (12) −0.0031 (13)
C9 0.0488 (13) 0.0317 (12) 0.0516 (15) 0.0004 (10) 0.0073 (11) −0.0037 (11)
C10 0.0476 (13) 0.0376 (13) 0.0523 (16) 0.0022 (10) 0.0064 (11) −0.0037 (11)
C11 0.0430 (13) 0.0352 (13) 0.0589 (16) 0.0015 (10) 0.0111 (11) −0.0029 (12)
C12 0.0510 (14) 0.0375 (13) 0.0633 (16) −0.0027 (11) 0.0126 (12) 0.0017 (11)
C13 0.0667 (16) 0.0362 (14) 0.0769 (18) 0.0007 (12) 0.0145 (14) −0.0040 (13)
C14 0.080 (2) 0.0348 (15) 0.107 (2) 0.0035 (13) 0.0123 (18) 0.0032 (15)
C15 0.107 (2) 0.0366 (16) 0.107 (3) −0.0150 (15) 0.020 (2) 0.0167 (16)
C16 0.093 (2) 0.090 (2) 0.068 (2) −0.0136 (19) −0.0048 (17) −0.0150 (18)
C17 0.0572 (15) 0.0503 (16) 0.0520 (17) 0.0034 (12) 0.0090 (13) 0.0026 (13)
C18 0.0562 (15) 0.0431 (14) 0.0618 (18) −0.0002 (11) 0.0050 (13) 0.0046 (12)
N1 0.0560 (12) 0.0388 (11) 0.0533 (13) −0.0014 (9) 0.0035 (10) −0.0036 (10)
N2 0.0573 (13) 0.0410 (12) 0.0612 (14) −0.0026 (9) 0.0054 (10) −0.0052 (11)
N3 0.0633 (13) 0.0348 (11) 0.0507 (13) 0.0006 (9) 0.0020 (10) 0.0025 (10)
O1 0.0786 (12) 0.0353 (9) 0.0598 (11) −0.0064 (8) −0.0016 (9) −0.0035 (8)
O2 0.0906 (13) 0.0409 (10) 0.0846 (14) −0.0075 (9) 0.0310 (11) 0.0049 (9)
O3 0.0962 (14) 0.0482 (12) 0.0768 (14) −0.0107 (10) −0.0018 (11) 0.0063 (10)
O4 0.0828 (13) 0.0657 (13) 0.0548 (12) −0.0119 (10) −0.0029 (10) 0.0016 (10)

Geometric parameters (Å, °)

C1—C2 1.382 (4) C11—N3 1.335 (3)
C1—C6 1.390 (4) C11—C12 1.464 (3)
C1—N1 1.412 (3) C12—C13 1.341 (3)
C2—C3 1.377 (4) C12—O2 1.361 (3)
C2—H2 0.9300 C13—C14 1.408 (4)
C3—C4 1.377 (5) C13—H13 0.9300
C3—H3 0.9300 C14—C15 1.320 (4)
C4—C5 1.365 (4) C14—H14 0.9300
C4—H4 0.9300 C15—O2 1.366 (3)
C5—C6 1.380 (4) C15—H15 0.9300
C5—H5 0.9300 C16—O4 1.453 (3)
C6—H6 0.9300 C16—H16A 0.9600
C7—C8 1.505 (3) C16—H16B 0.9600
C7—H7A 0.9600 C16—H16C 0.9600
C7—H7B 0.9600 C17—O3 1.204 (3)
C7—H7C 0.9600 C17—O4 1.317 (3)
C8—N2 1.303 (3) C17—C18 1.498 (4)
C8—C9 1.431 (3) C18—N3 1.440 (3)
C9—C11 1.390 (3) C18—H18A 0.9700
C9—C10 1.446 (3) C18—H18B 0.9700
C10—O1 1.247 (3) N1—N2 1.409 (3)
C10—N1 1.377 (3) N3—H3A 0.97 (3)
C2—C1—C6 119.7 (2) C13—C12—O2 109.9 (2)
C2—C1—N1 119.3 (2) C13—C12—C11 131.8 (2)
C6—C1—N1 121.1 (2) O2—C12—C11 118.2 (2)
C3—C2—C1 119.3 (3) C12—C13—C14 107.2 (2)
C3—C2—H2 120.4 C12—C13—H13 126.4
C1—C2—H2 120.4 C14—C13—H13 126.4
C2—C3—C4 121.2 (3) C15—C14—C13 106.1 (2)
C2—C3—H3 119.4 C15—C14—H14 127.0
C4—C3—H3 119.4 C13—C14—H14 127.0
C5—C4—C3 119.4 (3) C14—C15—O2 111.5 (3)
C5—C4—H4 120.3 C14—C15—H15 124.2
C3—C4—H4 120.3 O2—C15—H15 124.2
C4—C5—C6 120.6 (3) O4—C16—H16A 109.5
C4—C5—H5 119.7 O4—C16—H16B 109.5
C6—C5—H5 119.7 H16A—C16—H16B 109.5
C5—C6—C1 119.8 (3) O4—C16—H16C 109.5
C5—C6—H6 120.1 H16A—C16—H16C 109.5
C1—C6—H6 120.1 H16B—C16—H16C 109.5
C8—C7—H7A 109.5 O3—C17—O4 125.1 (3)
C8—C7—H7B 109.5 O3—C17—C18 125.1 (3)
H7A—C7—H7B 109.5 O4—C17—C18 109.8 (2)
C8—C7—H7C 109.5 N3—C18—C17 110.5 (2)
H7A—C7—H7C 109.5 N3—C18—H18A 109.6
H7B—C7—H7C 109.5 C17—C18—H18A 109.6
N2—C8—C9 112.3 (2) N3—C18—H18B 109.6
N2—C8—C7 117.8 (2) C17—C18—H18B 109.6
C9—C8—C7 129.8 (2) H18A—C18—H18B 108.1
C11—C9—C8 133.2 (2) C10—N1—N2 111.56 (19)
C11—C9—C10 121.9 (2) C10—N1—C1 129.3 (2)
C8—C9—C10 104.8 (2) N2—N1—C1 118.9 (2)
O1—C10—N1 126.3 (2) C8—N2—N1 106.2 (2)
O1—C10—C9 128.8 (2) C11—N3—C18 126.3 (2)
N1—C10—C9 104.9 (2) C11—N3—H3A 113.8 (15)
N3—C11—C9 119.2 (2) C18—N3—H3A 119.8 (15)
N3—C11—C12 118.9 (2) C12—O2—C15 105.4 (2)
C9—C11—C12 121.9 (2) C17—O4—C16 117.5 (2)
C6—C1—C2—C3 −1.5 (4) C11—C12—C13—C14 176.1 (3)
N1—C1—C2—C3 179.4 (2) C12—C13—C14—C15 0.4 (3)
C1—C2—C3—C4 1.1 (5) C13—C14—C15—O2 −0.4 (4)
C2—C3—C4—C5 −0.4 (5) O3—C17—C18—N3 7.8 (4)
C3—C4—C5—C6 0.0 (5) O4—C17—C18—N3 −173.49 (19)
C4—C5—C6—C1 −0.5 (4) O1—C10—N1—N2 −175.3 (2)
C2—C1—C6—C5 1.2 (4) C9—C10—N1—N2 5.2 (2)
N1—C1—C6—C5 −179.7 (2) O1—C10—N1—C1 −0.7 (4)
N2—C8—C9—C11 178.9 (2) C9—C10—N1—C1 179.8 (2)
C7—C8—C9—C11 2.6 (4) C2—C1—N1—C10 −166.8 (2)
N2—C8—C9—C10 2.5 (3) C6—C1—N1—C10 14.1 (4)
C7—C8—C9—C10 −173.8 (2) C2—C1—N1—N2 7.4 (3)
C11—C9—C10—O1 −0.9 (4) C6—C1—N1—N2 −171.6 (2)
C8—C9—C10—O1 175.9 (2) C9—C8—N2—N1 0.6 (2)
C11—C9—C10—N1 178.59 (19) C7—C8—N2—N1 177.36 (19)
C8—C9—C10—N1 −4.5 (2) C10—N1—N2—C8 −3.7 (2)
C8—C9—C11—N3 −167.5 (2) C1—N1—N2—C8 −178.93 (18)
C10—C9—C11—N3 8.3 (3) C9—C11—N3—C18 −178.5 (2)
C8—C9—C11—C12 15.0 (4) C12—C11—N3—C18 −0.9 (3)
C10—C9—C11—C12 −169.2 (2) C17—C18—N3—C11 164.5 (2)
N3—C11—C12—C13 −129.3 (3) C13—C12—O2—C15 −0.1 (3)
C9—C11—C12—C13 48.2 (4) C11—C12—O2—C15 −176.9 (2)
N3—C11—C12—O2 46.7 (3) C14—C15—O2—C12 0.3 (3)
C9—C11—C12—O2 −135.8 (2) O3—C17—O4—C16 −1.5 (4)
O2—C12—C13—C14 −0.2 (3) C18—C17—O4—C16 179.8 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N3—H3A···O1 0.97 (3) 1.89 (3) 2.704 (3) 140 (2)
C14—H14···O1i 0.93 2.48 3.386 (4) 164

Symmetry codes: (i) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5123).

References

  1. Bruker (2005). APEX2 and SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Casas, J. S., García-Tasende, M. S., Sanchez, A., Sordo, J. & Touceda, Á. (2007). Coord. Chem. Rev. 251, 1561–1589.
  3. Jensen, B. S. (1959). Acta Chem Scand 13, 1668–1670.
  4. Li, J.-Z., Li, G. & Yu, W.-J. (2000). J. Rare Earth, 18, 233–236.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Zhang, H.-Q., Li, J.-Z., Zhang, Y. & Zhang, D. (2008). Chin. J. Inorg. Chem. 24, 990–993.
  7. Zhang, H.-Q., Li, J.-Z., Zhang, Y., Zhang, D. & Su, Z.-H. (2007). Acta Cryst. E63, o3536.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811026158/cv5123sup1.cif

e-67-o1936-sup1.cif (19.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811026158/cv5123Isup2.hkl

e-67-o1936-Isup2.hkl (142.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811026158/cv5123Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES