Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jul 9;67(Pt 8):o1981–o1982. doi: 10.1107/S1600536811026808

2-(Pyridin-2-yl­amino)­pyridinium thio­cyanate acetonitrile monosolvate

Bonell Schmitt a, Thomas Gerber a, Eric Hosten a, Richard Betz a,*
PMCID: PMC3213439  PMID: 22091018

Abstract

The title compound, C10H10N3 +·NCS·CH3CN, is the acetonitrile solvate of the thio­cyanate salt of protonated dipyridin-2-yl­amine. Protonation occurs at one of the pyridine N atoms. The mol­ecular geometry around the central N atom is essentially planar (sum of angles = 359.89°). In the crystal, N—H⋯N hydrogen bonds, as well as C—H⋯S contacts link the different residues into chains along the c-axis direction. Inter­action between aromatic systems gives rise to π-stacking, the shortest distance between two π-systems being 3.6902 (6) Å. Both the protonated and the non-protonated pyridyl groups are involved in the latter inter­action.

Related literature

For the crystal structure of dipyridin-2-yl­amine, see for example: Johnson & Jacobson (1973); Pyrka & Pinkerton (1992); Schödel et al. (1996). For the crystal structures of comparable chloride, bromide and nitrate salts, see: Bock et al. (1998); Junk et al. (2006); Du & Zhao (2004). For the use of chelating ligands in coordination chemistry, see: Gade (1998). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995).graphic file with name e-67-o1981-scheme1.jpg

Experimental

Crystal data

  • C10H10N3 +·CNS·C2H3N

  • M r = 271.34

  • Triclinic, Inline graphic

  • a = 7.5450 (3) Å

  • b = 7.8790 (3) Å

  • c = 11.9900 (4) Å

  • α = 76.849 (1)°

  • β = 75.211 (1)°

  • γ = 81.371 (1)°

  • V = 667.88 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 100 K

  • 0.54 × 0.40 × 0.34 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008) T min = 0.899, T max = 1.000

  • 11528 measured reflections

  • 3313 independent reflections

  • 3113 reflections with I > 2σ(I)

  • R int = 0.016

Refinement

  • R[F 2 > 2σ(F 2)] = 0.028

  • wR(F 2) = 0.082

  • S = 1.07

  • 3313 reflections

  • 181 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811026808/ya2142sup1.cif

e-67-o1981-sup1.cif (16KB, cif)

Supplementary material file. DOI: 10.1107/S1600536811026808/ya2142Isup2.cdx

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811026808/ya2142Isup3.hkl

e-67-o1981-Isup3.hkl (162.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811026808/ya2142Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H71⋯N10 0.903 (15) 1.901 (15) 2.8020 (11) 176.4 (13)
N3—H73⋯N2 0.926 (15) 1.861 (15) 2.6068 (11) 135.9 (12)
N3—H73⋯N20i 0.926 (15) 2.456 (15) 3.1199 (12) 128.7 (11)
C25—H25⋯S1i 0.95 2.83 3.5192 (9) 130

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank Mr David Neil-Schutte for helpful discussions.

supplementary crystallographic information

Comment

Chelate ligands have found widespread use in coordination chemistry due to the enhanced thermodynamic stability of resulting coordination compounds as compared to that of the complexes with exclusively monodentate ligands (Gade, 1998). Combining different sets of donor atoms in one chelate ligand molecule, allows to construct a probe for testing and accommodating metal centers of different Lewis acidities. In our efforts to synthesize a chelate ligand featuring a set of oxygen, sulfur and nitrogen as possible donor atoms, a crystalline reaction product was obtained whose crystal structure analysis revealed the unintentional synthesis of a salt of the starting material, dipyridin-2-ylamine. The crystal structure of free dipyridin-2-ylamine has been reported earlier (e.g. Johnson & Jacobson, 1973; Pyrka & Pinkerton, 1992; Schödel et al., 1996).

The studied compound was proved to be the thiocyanate salt of protonated dipyridin-2-ylamine (Fig. 1). Protonation occurs at one of the pyridine nitrogen atoms. The central nitrogen atom has a nearly trigonal-planar molecular geometry with H-N-C angles of 115.3 (9) °, 117.0 (9) ° and C-N-C angle of 127.59 (8) °. The aromatic systems are nearly coplanar, the least-squares planes defined by their respective atoms form very small dihedral angle of 1.99 (4) °. These observations are in good agreement with the geometrical parameters reported for similar compounds such as the chloride (Bock et al., 1998), the bromide (Junk et al., 2006) or the nitrate (Du & Zhao, 2004). In contrast to unprotonated dipyridine-2-ylamine, the title compound features the aromatic-ring-containing entity in a conformation with the pyridine nitrogen atoms facing each other. In addition, the pyridine moieties in neutral dipyridine-2-ylamine usually form dihedral angles well above 20 ° (Johnson & Jacobson, 1973); this difference is most probably due to the formation of an intramolecular hydrogen bond in the molecule of the title compound (Fig. 2; vide infra).

In the crystal structure, both nitrogen-bound hydrogen atoms take part in hydrogen bonds. While the nitrogen atom of the acetonitrile molecule serves as acceptor for the hydrogen bond originating from the protonated pyridyl moiety, the nitrogen atom of the thiocyanate anion serves as acceptor for the hydrogen bond involving the central NH group. Apart from these hydrogen bonds, the C-H···S contact, which is about 0.10 Å shorter than the sum of van-der-Waals radii of the corresponding atoms, exists in the crystal. These contacts originate from the H atom in ortho-position to the nitrogen atom in the protonated pyridyl moiety. As a result, all chemical residues of the crystal structure end up being linked into the infinite chains running along the crystallographic c axis (Fig. 2). In terms of graph-set analysis, (Etter et al., 1990; Bernstein et al., 1995), the descriptor for the hydrogen bonding system on the unitary level is DD while the C-H···S contacts necessitate a D descriptor on the same level. Interaction between aromatic systems gives rise to π-stacking. The shortest intercentroid distance between two π-systems was measured at 3.6902 (6) Å and involves the protonated as well as the non-protonated pyridyl moiety. These connect the molecules into stacks along the a axis. The packing of the cystal of the title compound is shown in Fig. 3.

Experimental

The compound was prepared upon reacting of 4-bromobenzyl chloride (2.5 mmol) with potassium thiocyanate (2.5 mmol) and dipyridin-2-ylamine (2.5 mmol) in refluxing acetonitrile (15 mL) under nitrogen for two hours. Crystals suitable for the X-ray diffraction study were obtained upon free evaporation of the reaction mixture.

Refinement

Carbon-bound H atoms were placed in calculated positions (C-H 0.95 Å, for methyl H atoms 0.98 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C) [1.5Ueq(C) for methyl H atoms]. Both nitrogen-bound H atoms were located in a difference Fourier map and refined isotropically, N(pyr)-H 0.926 (15) Å; N(amine)-H 0.903 (15) Å.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound; displacement ellipsoids are drawn at 50% probability level.

Fig. 2.

Fig. 2.

Intra- and intermolecular contacts, viewed along the a-axis. Symmetry operators: (i) x, y, z + 1; (ii) x, y, z - 1. Hydrogen bonds are indicated with green dashed lines, the C-H···S contacts are drawn as red dashed lines.

Fig. 3.

Fig. 3.

Molecular packing of the title compound, viewed along the a-axis (anisotropic displacement ellipsoids drawn at 50% probability level).

Crystal data

C10H10N3+·CNS·C2H3N Z = 2
Mr = 271.34 F(000) = 284
Triclinic, P1 Dx = 1.349 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71069 Å
a = 7.5450 (3) Å Cell parameters from 9959 reflections
b = 7.8790 (3) Å θ = 2.7–28.3°
c = 11.9900 (4) Å µ = 0.24 mm1
α = 76.849 (1)° T = 100 K
β = 75.211 (1)° Block, colourless
γ = 81.371 (1)° 0.54 × 0.40 × 0.34 mm
V = 667.88 (4) Å3

Data collection

Bruker APEXII CCD diffractometer 3313 independent reflections
Radiation source: fine-focus sealed tube 3113 reflections with I > 2σ(I)
graphite Rint = 0.016
φ and ω scans θmax = 28.3°, θmin = 2.7°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −10→10
Tmin = 0.899, Tmax = 1.000 k = −10→10
11528 measured reflections l = −15→15

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082 H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0442P)2 + 0.184P] where P = (Fo2 + 2Fc2)/3
3313 reflections (Δ/σ)max < 0.001
181 parameters Δρmax = 0.43 e Å3
0 restraints Δρmin = −0.20 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.29241 (3) 0.79739 (3) 0.47166 (2) 0.02280 (9)
N1 0.25212 (11) 0.56147 (10) 0.07444 (7) 0.01647 (16)
H71 0.265 (2) 0.6054 (19) 0.1350 (13) 0.031 (3)*
N2 0.17025 (10) 0.32447 (10) 0.01896 (7) 0.01588 (16)
N3 0.31181 (10) 0.59208 (10) −0.13124 (7) 0.01503 (15)
H73 0.267 (2) 0.484 (2) −0.1156 (13) 0.034 (4)*
N10 0.30552 (13) 0.68937 (12) 0.26202 (8) 0.02613 (19)
N20 0.20385 (13) 0.32594 (13) 0.74643 (8) 0.0283 (2)
C1 0.30149 (12) 0.73414 (12) 0.34893 (8) 0.01752 (18)
C2 0.20307 (13) 0.31158 (12) 0.65393 (9) 0.02028 (19)
C3 0.19939 (15) 0.29362 (15) 0.53641 (9) 0.0254 (2)
H31 0.0713 0.3014 0.5301 0.038*
H32 0.2624 0.1799 0.5219 0.038*
H33 0.2620 0.3875 0.4781 0.038*
C11 0.18123 (12) 0.39962 (11) 0.10570 (8) 0.01469 (17)
C12 0.12748 (12) 0.32258 (12) 0.22524 (8) 0.01750 (18)
H12 0.1330 0.3817 0.2849 0.021*
C13 0.06646 (13) 0.15854 (13) 0.25345 (8) 0.01970 (19)
H13 0.0315 0.1012 0.3334 0.024*
C14 0.05640 (13) 0.07707 (12) 0.16347 (9) 0.01948 (18)
H14 0.0156 −0.0364 0.1809 0.023*
C15 0.10734 (12) 0.16579 (12) 0.04863 (8) 0.01750 (18)
H15 0.0974 0.1119 −0.0125 0.021*
C21 0.31450 (11) 0.65375 (11) −0.03559 (8) 0.01480 (17)
C22 0.38354 (12) 0.81677 (12) −0.05213 (8) 0.01729 (18)
H22 0.3894 0.8618 0.0138 0.021*
C23 0.44192 (12) 0.90943 (12) −0.16401 (9) 0.01963 (19)
H23 0.4863 1.0203 −0.1757 0.024*
C24 0.43654 (13) 0.84134 (12) −0.26181 (8) 0.01979 (19)
H24 0.4770 0.9051 −0.3396 0.024*
C25 0.37210 (12) 0.68195 (12) −0.24274 (8) 0.01763 (18)
H25 0.3693 0.6334 −0.3078 0.021*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.02876 (14) 0.02784 (14) 0.01436 (12) −0.00606 (10) −0.00536 (9) −0.00676 (9)
N1 0.0214 (4) 0.0168 (4) 0.0133 (3) −0.0032 (3) −0.0052 (3) −0.0050 (3)
N2 0.0180 (3) 0.0152 (3) 0.0151 (3) −0.0011 (3) −0.0045 (3) −0.0040 (3)
N3 0.0161 (3) 0.0148 (3) 0.0147 (4) −0.0021 (3) −0.0037 (3) −0.0034 (3)
N10 0.0339 (5) 0.0271 (4) 0.0221 (4) −0.0047 (4) −0.0103 (4) −0.0089 (3)
N20 0.0331 (5) 0.0306 (5) 0.0226 (4) −0.0048 (4) −0.0063 (4) −0.0072 (4)
C1 0.0191 (4) 0.0165 (4) 0.0173 (4) −0.0043 (3) −0.0055 (3) −0.0011 (3)
C2 0.0209 (4) 0.0174 (4) 0.0225 (5) −0.0040 (3) −0.0042 (3) −0.0034 (3)
C3 0.0267 (5) 0.0310 (5) 0.0208 (5) −0.0050 (4) −0.0058 (4) −0.0081 (4)
C11 0.0143 (4) 0.0150 (4) 0.0149 (4) 0.0006 (3) −0.0045 (3) −0.0033 (3)
C12 0.0184 (4) 0.0208 (4) 0.0133 (4) 0.0005 (3) −0.0045 (3) −0.0041 (3)
C13 0.0188 (4) 0.0211 (4) 0.0158 (4) −0.0002 (3) −0.0027 (3) 0.0006 (3)
C14 0.0190 (4) 0.0153 (4) 0.0227 (5) −0.0020 (3) −0.0043 (3) −0.0012 (3)
C15 0.0188 (4) 0.0160 (4) 0.0187 (4) −0.0012 (3) −0.0049 (3) −0.0053 (3)
C21 0.0135 (4) 0.0156 (4) 0.0158 (4) 0.0007 (3) −0.0043 (3) −0.0042 (3)
C22 0.0165 (4) 0.0170 (4) 0.0205 (4) −0.0019 (3) −0.0054 (3) −0.0065 (3)
C23 0.0166 (4) 0.0170 (4) 0.0255 (5) −0.0039 (3) −0.0047 (3) −0.0034 (3)
C24 0.0178 (4) 0.0211 (4) 0.0183 (4) −0.0041 (3) −0.0021 (3) −0.0004 (3)
C25 0.0174 (4) 0.0205 (4) 0.0148 (4) −0.0020 (3) −0.0033 (3) −0.0035 (3)

Geometric parameters (Å, °)

S1—C1 1.6403 (10) C12—C13 1.3773 (13)
N1—C21 1.3564 (11) C12—H12 0.9500
N1—C11 1.3920 (11) C13—C14 1.3976 (13)
N1—H71 0.903 (15) C13—H13 0.9500
N2—C11 1.3334 (11) C14—C15 1.3802 (13)
N2—C15 1.3433 (11) C14—H14 0.9500
N3—C21 1.3492 (11) C15—H15 0.9500
N3—C25 1.3606 (11) C21—C22 1.4116 (12)
N3—H73 0.926 (15) C22—C23 1.3696 (13)
N10—C1 1.1659 (13) C22—H22 0.9500
N20—C2 1.1418 (14) C23—C24 1.4077 (13)
C2—C3 1.4553 (13) C23—H23 0.9500
C3—H31 0.9800 C24—C25 1.3644 (13)
C3—H32 0.9800 C24—H24 0.9500
C3—H33 0.9800 C25—H25 0.9500
C11—C12 1.4029 (12)
C21—N1—C11 127.59 (8) C14—C13—H13 120.3
C21—N1—H71 117.0 (9) C15—C14—C13 118.25 (8)
C11—N1—H71 115.3 (9) C15—C14—H14 120.9
C11—N2—C15 117.74 (8) C13—C14—H14 120.9
C21—N3—C25 122.32 (8) N2—C15—C14 123.30 (8)
C21—N3—H73 115.2 (9) N2—C15—H15 118.3
C25—N3—H73 122.5 (9) C14—C15—H15 118.3
N10—C1—S1 179.13 (9) N3—C21—N1 120.87 (8)
N20—C2—C3 179.23 (11) N3—C21—C22 118.67 (8)
C2—C3—H31 109.5 N1—C21—C22 120.46 (8)
C2—C3—H32 109.5 C23—C22—C21 119.42 (8)
H31—C3—H32 109.5 C23—C22—H22 120.3
C2—C3—H33 109.5 C21—C22—H22 120.3
H31—C3—H33 109.5 C22—C23—C24 120.36 (8)
H32—C3—H33 109.5 C22—C23—H23 119.8
N2—C11—N1 117.54 (8) C24—C23—H23 119.8
N2—C11—C12 123.26 (8) C25—C24—C23 118.70 (8)
N1—C11—C12 119.19 (8) C25—C24—H24 120.6
C13—C12—C11 117.93 (8) C23—C24—H24 120.6
C13—C12—H12 121.0 N3—C25—C24 120.50 (8)
C11—C12—H12 121.0 N3—C25—H25 119.7
C12—C13—C14 119.46 (8) C24—C25—H25 119.7
C12—C13—H13 120.3
C15—N2—C11—N1 177.96 (8) C25—N3—C21—N1 179.52 (8)
C15—N2—C11—C12 −1.17 (13) C25—N3—C21—C22 −0.43 (12)
C21—N1—C11—N2 −0.70 (13) C11—N1—C21—N3 0.43 (14)
C21—N1—C11—C12 178.47 (8) C11—N1—C21—C22 −179.63 (8)
N2—C11—C12—C13 2.30 (13) N3—C21—C22—C23 1.40 (13)
N1—C11—C12—C13 −176.82 (8) N1—C21—C22—C23 −178.54 (8)
C11—C12—C13—C14 −1.38 (13) C21—C22—C23—C24 −1.21 (13)
C12—C13—C14—C15 −0.47 (13) C22—C23—C24—C25 0.04 (14)
C11—N2—C15—C14 −0.87 (13) C21—N3—C25—C24 −0.76 (13)
C13—C14—C15—N2 1.68 (14) C23—C24—C25—N3 0.95 (14)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H71···N10 0.903 (15) 1.901 (15) 2.8020 (11) 176.4 (13)
N3—H73···N2 0.926 (15) 1.861 (15) 2.6068 (11) 135.9 (12)
N3—H73···N20i 0.926 (15) 2.456 (15) 3.1199 (12) 128.7 (11)
C25—H25···S1i 0.95 2.83 3.5192 (9) 130

Symmetry codes: (i) x, y, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: YA2142).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  2. Bock, H., Schödel, H., Van, T. T. H., Dienelt, R. & Gluth, M. (1998). J. Prakt. Chem. Chem. Zeitung, 340, 722–732.
  3. Bruker (2008). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Bruker (2010). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Du, M. & Zhao, X.-J. (2004). Acta Cryst. E60, o439–o441.
  6. Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [DOI] [PubMed]
  7. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  8. Gade, L. H. (1998). Koordinationschemie, 1. Auflage. Weinheim: Wiley-VCH.
  9. Johnson, J. E. & Jacobson, R. A. (1973). Acta Cryst. B29, 1669–1674.
  10. Junk, P. C., Wei-Min, L., Semenova, L. I., Skelton, B. W. & White, A. H. (2006). Z. Anorg. Allg. Chem. 632, 1303–1311.
  11. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  12. Pyrka, G. J. & Pinkerton, A. A. (1992). Acta Cryst. C48, 91–94.
  13. Schödel, H., Näther, C., Bock, H. & Butenschön, F. (1996). Acta Cryst. B52, 842–853.
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811026808/ya2142sup1.cif

e-67-o1981-sup1.cif (16KB, cif)

Supplementary material file. DOI: 10.1107/S1600536811026808/ya2142Isup2.cdx

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811026808/ya2142Isup3.hkl

e-67-o1981-Isup3.hkl (162.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811026808/ya2142Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES