Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jul 9;67(Pt 8):o1985. doi: 10.1107/S1600536811026857

(1S*,3S*,8S*,10S*)-10-Fluoro-15-oxa­tetra­cyclo­[6.6.1.01,10.03,8]penta­deca-5,12-dien-3-ol

Goverdhan Mehta a,*, Saikat Sen a
PMCID: PMC3213441  PMID: 22091020

Abstract

The title compound, C14H17FO2, was obtained from anti-4a,9a:8a,10a-diep­oxy-1,4,4a,5,8,8a,9,9a,10,10a-deca­hydro­anthra­cene via tandem hydrogen-fluoride-mediated epoxide ring-opening and transannular oxacyclization. With the two cyclo­hexene rings folded towards the oxygen bridge, the title tetra­cyclic fluoro­alcohol mol­ecule displays a conformation remin­iscent of a pagoda. The crystal packing is effected via inter­molecular O—H⋯O hydrogen bonds, which link the mol­ecules into a zigzag chain along the b axis.

Related literature

For applications of organofluorine compounds as pharmaceuticals, see: Kirsch (2004); Bégué & Bonnet-Delpon (2006); Müller et al. (2007). For the use of diethyl­amino­sulfur trifluoride, 1-chloro­methyl-4-fluoro­diazo­niabicyclo­[2.2.2]octane bis­(tetra­fluoro­borate) and pyridinium poly(hydrogen fluoride) as reagents for selective introduction of C—F bonds, see: Middleton (1975); Olah et al. (1979); Banks et al. (1992). For the preparation of the title compound, see: Mehta et al. (2007); Mehta & Sen (2010).graphic file with name e-67-o1985-scheme1.jpg

Experimental

Crystal data

  • C14H17FO2

  • M r = 236.28

  • Monoclinic, Inline graphic

  • a = 8.1603 (6) Å

  • b = 10.9148 (8) Å

  • c = 13.5558 (10) Å

  • β = 96.285 (3)°

  • V = 1200.13 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 291 K

  • 0.26 × 0.22 × 0.12 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003) T min = 0.976, T max = 0.989

  • 10752 measured reflections

  • 2454 independent reflections

  • 2038 reflections with I > 2σ(I)

  • R int = 0.020

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.113

  • S = 1.03

  • 2454 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811026857/is2740sup1.cif

e-67-o1985-sup1.cif (23.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811026857/is2740Isup2.hkl

e-67-o1985-Isup2.hkl (118.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811026857/is2740Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.82 2.14 2.9554 (14) 177

Symmetry code: (i) Inline graphic.

Acknowledgments

We thank the Department of Science and Technology (DST), India, for the CCD facility at the Indian Institute of Science (IISc), Bangalore. GM thanks the Council for Scientific and Industrial Research (CSIR), India, for research support and the award of a Bhatnagar Fellowship.

supplementary crystallographic information

Comment

Organofluorine compounds, while rarely occurring naturally, constitute around 20% of all known pharmaceuticals (Bégué & Bonnet-Delpon, 2006; Müller et al., 2007). The wide- spread applications of fluorinated organic compounds in the therapeutic arena has been attributed to the fact that incorporating fluorine in a drug can significantly enhance its lipophilicity and in vitro stability towards cytochrome P450 enzymatic oxidation (Kirsch, 2004; Müller et al., 2007).

Not surprisingly, various reagents, such as diethylaminosulfur trifluoride (DAST) (Middleton, 1975) and 1-chloromethyl-4-fluorodiazoniabicyclo[2.2.2]octane bis(tetrafluoroborate) (Selectfluor) (Banks et al., 1992) have been developed over the years for achieving controlled and selective introduction of C—F bonds. The Olah's reagent [pyridinium poly(hydrogen fluoride)] was, in this context, among the first such fluorinating agents to be reported (Olah et al., 1979; Müller et al., 2007).

In a recent endeavor, we employed this reagent as means of accessing the difluorodiol 1via one-pot HF-mediated ring-opening in the syn-diepoxide 2 (Fig. 1; Mehta & Sen, 2010). The complete regio- and stereoselectivity, observed in this bis-fluorination step, was intriguing and goaded us to investigate the outcome of reacting pyridine poly(hydrogen fluoride) with the anti-diepoxide 3 (Fig. 2; Mehta et al., 2007).

The title compound 4, bearing a 7-oxanorbornane core inscribed in a 1,4,4a,5,8,8a,9,9a,10,10a-decahydroanthracene framework, was obtained as the major product. Formation of the tetracyclic fluoroalcohol 4 can be explained by an initial HF-mediated epoxide ring opening in 3 to yield the fluorohydrin 5, followed by a novel variant of a hydroxy-mediated bishomo-Payne rearrangement in 5 to afford 4 (Fig. 3).

The crystal structure of 4 was solved and refined in the centrosymmetric monoclinic space group P21/c (Z = 4). The two flanking cyclohexene rings, folded towards the oxa bridge of the bicyclic core, and the pendant syn-4-fluoro-butan-1-ol moiety afforded the molecule an interesting pagoda-like architecture (Fig. 4). Crystal packing in 4 was effected via the agency of intermolecular O—H···O hydrogen bonds which linked the tetraacetate molecules into zigzag chains along the b axis (Fig. 5).

Experimental

A solution of the anti-diepoxide 3 (35 mg, 0.162 mmol) in 1 ml of dry THF was treated with pyridine- poly(hydrogen fluoride) (0.5 ml, 27.5 mmol) at 273 K. The reaction was allowed to proceed for 7 h at ambient temperature. The mixture was then quenched with saturated sodium bicarbonate solution. The product was extracted with ethyl acetate; the combined extracts were washed with brine and then dried over anhydrous sodium sulfate. Removal of solvent, column chromatography over silica gel and subsequent recrystallization using 20% EtOAc-petroleum ether afforded 4 (25 mg, 65%) as a colorless crystalline solid.

Refinement

The methine (CH) and methylene (CH2) H atoms were placed in geometrically idealized positions with C—H distances 0.93 and 0.97 Å respectively, and allowed to ride on their parent atoms with Uiso(H) = 1.2Ueq(C). The hydroxyl hydrogen atom was constrained to an ideal geometry with the O—H distance fixed at 0.82 Å and Uiso(H) = 1.5Ueq(O). During refinement, the hydroxyl group was however allowed to rotate freely about its C—O bond.

Figures

Fig. 1.

Fig. 1.

Chemical structural diagrams of 1 and 2.

Fig. 2.

Fig. 2.

Chemical structural diagram of 3.

Fig. 3.

Fig. 3.

Preparation of the title compound, fluoroalcohol 4, from the anti- diepoxide 3.

Fig. 4.

Fig. 4.

The molecular structure of the title compound 4, with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.

Fig. 5.

Fig. 5.

A packing diagram of the title compound 4, viewed along the c axis. Non-interacting hydrogen atoms have been removed for clarity. Dotted lines indicate the O—H···O hydrogen bonds.

Crystal data

C14H17FO2 F(000) = 504
Mr = 236.28 Dx = 1.308 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 4978 reflections
a = 8.1603 (6) Å θ = 2.4–26.4°
b = 10.9148 (8) Å µ = 0.10 mm1
c = 13.5558 (10) Å T = 291 K
β = 96.285 (3)° Block, colorless
V = 1200.13 (15) Å3 0.26 × 0.22 × 0.12 mm
Z = 4

Data collection

Bruker SMART APEX CCD area-detector diffractometer 2454 independent reflections
Radiation source: fine-focus sealed tube 2038 reflections with I > 2σ(I)
graphite Rint = 0.020
φ and ω scans θmax = 26.4°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) h = −10→10
Tmin = 0.976, Tmax = 0.989 k = −13→12
10752 measured reflections l = −16→16

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0537P)2 + 0.3336P] where P = (Fo2 + 2Fc2)/3
2454 reflections (Δ/σ)max < 0.001
155 parameters Δρmax = 0.19 e Å3
0 restraints Δρmin = −0.21 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
F1 0.50293 (10) −0.03822 (8) 0.17755 (7) 0.0539 (3)
O1 0.92031 (13) −0.15772 (9) 0.33199 (8) 0.0491 (3)
O2 0.86964 (11) 0.13521 (8) 0.21690 (6) 0.0368 (2)
C1 0.61016 (16) 0.05894 (12) 0.20951 (11) 0.0395 (3)
C10 1.2213 (2) 0.0155 (2) 0.34728 (15) 0.0648 (5)
C11 1.1499 (2) 0.08929 (18) 0.40684 (13) 0.0614 (5)
C12 0.96990 (19) 0.11773 (14) 0.39499 (11) 0.0466 (4)
C13 0.87362 (16) 0.05869 (11) 0.30592 (9) 0.0340 (3)
C14 0.68963 (16) 0.03854 (13) 0.31557 (10) 0.0392 (3)
C2 0.5123 (2) 0.17729 (15) 0.19553 (13) 0.0553 (4)
C3 0.4910 (3) 0.21989 (19) 0.09124 (16) 0.0818 (7)
C4 0.5907 (3) 0.18950 (17) 0.02523 (15) 0.0786 (7)
C5 0.7339 (2) 0.10512 (18) 0.04581 (11) 0.0610 (5)
C6 0.76146 (17) 0.05679 (12) 0.15111 (10) 0.0392 (3)
C7 0.84679 (18) −0.06886 (13) 0.16311 (11) 0.0442 (3)
C8 0.94747 (17) −0.05946 (12) 0.26624 (11) 0.0388 (3)
C9 1.13154 (18) −0.04261 (15) 0.25771 (13) 0.0531 (4)
H1 0.9770 −0.2167 0.3197 0.074*
H2A 0.4045 0.1650 0.2178 0.066*
H2B 0.5683 0.2405 0.2367 0.066*
H3 0.4022 0.2709 0.0713 0.098*
H4 0.5705 0.2227 −0.0381 0.094*
H5A 0.8327 0.1478 0.0313 0.073*
H5B 0.7184 0.0360 0.0008 0.073*
H7A 0.9182 −0.0825 0.1115 0.053*
H7B 0.7666 −0.1346 0.1614 0.053*
H9A 1.1803 −0.1220 0.2473 0.064*
H9B 1.1448 0.0078 0.2002 0.064*
H10 1.3331 −0.0010 0.3620 0.078*
H11 1.2156 0.1257 0.4592 0.074*
H12A 0.9561 0.2058 0.3898 0.056*
H12B 0.9234 0.0913 0.4543 0.056*
H14A 0.6692 −0.0438 0.3382 0.047*
H14B 0.6492 0.0971 0.3610 0.047*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
F1 0.0442 (5) 0.0448 (5) 0.0715 (6) −0.0124 (4) 0.0006 (4) −0.0057 (4)
O1 0.0522 (6) 0.0300 (5) 0.0669 (7) 0.0054 (4) 0.0147 (5) 0.0108 (5)
O2 0.0422 (5) 0.0291 (5) 0.0387 (5) −0.0068 (4) 0.0022 (4) 0.0038 (4)
C1 0.0360 (7) 0.0309 (7) 0.0508 (8) −0.0029 (5) 0.0007 (6) −0.0021 (6)
C2 0.0473 (8) 0.0422 (9) 0.0736 (11) 0.0093 (7) −0.0056 (7) −0.0028 (8)
C3 0.1079 (17) 0.0514 (11) 0.0764 (13) 0.0268 (11) −0.0331 (12) −0.0016 (10)
C4 0.1288 (19) 0.0463 (10) 0.0522 (10) −0.0003 (11) −0.0282 (11) 0.0103 (8)
C5 0.0777 (12) 0.0640 (11) 0.0400 (8) −0.0165 (9) 0.0000 (8) 0.0061 (8)
C6 0.0445 (7) 0.0343 (7) 0.0382 (7) −0.0062 (6) 0.0023 (6) −0.0016 (5)
C7 0.0470 (8) 0.0374 (7) 0.0498 (8) −0.0010 (6) 0.0127 (6) −0.0089 (6)
C8 0.0374 (7) 0.0297 (7) 0.0503 (8) 0.0017 (5) 0.0096 (6) 0.0032 (6)
C9 0.0374 (8) 0.0498 (9) 0.0742 (11) 0.0044 (7) 0.0153 (7) 0.0081 (8)
C10 0.0351 (8) 0.0794 (13) 0.0784 (12) −0.0069 (8) −0.0007 (8) 0.0220 (11)
C11 0.0535 (9) 0.0697 (12) 0.0568 (10) −0.0230 (9) −0.0128 (8) 0.0114 (9)
C12 0.0585 (9) 0.0369 (7) 0.0423 (8) −0.0066 (7) −0.0036 (6) 0.0018 (6)
C13 0.0378 (7) 0.0270 (6) 0.0371 (7) −0.0016 (5) 0.0040 (5) 0.0036 (5)
C14 0.0395 (7) 0.0354 (7) 0.0442 (7) 0.0028 (6) 0.0112 (6) −0.0001 (6)

Geometric parameters (Å, °)

F1—C1 1.4126 (15) C7—H7A 0.9700
O1—C8 1.4272 (16) C7—H7B 0.9700
O1—H1 0.8200 C8—C7 1.545 (2)
O2—C13 1.4650 (15) C8—C9 1.530 (2)
O2—C6 1.4611 (16) C9—C10 1.490 (3)
C1—C14 1.527 (2) C9—H9A 0.9700
C1—C2 1.520 (2) C9—H9B 0.9700
C2—C3 1.480 (3) C10—H10 0.9300
C2—H2A 0.9700 C11—C10 1.320 (3)
C2—H2B 0.9700 C11—H11 0.9300
C3—H3 0.9300 C12—C11 1.493 (2)
C4—C3 1.316 (3) C12—H12A 0.9700
C4—H4 0.9300 C12—H12B 0.9700
C5—C4 1.490 (3) C13—C12 1.5109 (19)
C5—H5A 0.9700 C13—C14 1.5371 (18)
C5—H5B 0.9700 C13—C8 1.5448 (18)
C6—C1 1.538 (2) C14—H14A 0.9700
C6—C5 1.515 (2) C14—H14B 0.9700
C6—C7 1.5387 (19)
F1—C1—C14 111.36 (11) C6—C7—H7A 111.2
F1—C1—C2 107.49 (11) C6—C7—H7B 111.2
F1—C1—C6 109.63 (11) C6—O2—C13 97.25 (9)
O1—C8—C13 108.46 (11) C8—C7—H7A 111.2
O1—C8—C7 114.30 (11) C8—C7—H7B 111.2
O1—C8—C9 111.00 (12) C8—C9—H9A 109.0
O2—C13—C12 112.20 (10) C8—C9—H9B 109.0
O2—C13—C14 102.58 (10) C8—O1—H1 109.5
O2—C13—C8 99.41 (10) C9—C10—H10 118.4
O2—C6—C1 98.18 (10) C9—C8—C13 110.46 (12)
O2—C6—C5 112.86 (12) C9—C8—C7 111.63 (12)
O2—C6—C7 102.79 (11) C10—C11—C12 123.78 (15)
C1—C14—C13 102.54 (10) C10—C11—H11 118.1
C1—C14—H14A 111.3 C10—C9—C8 112.88 (14)
C1—C14—H14B 111.3 C10—C9—H9A 109.0
C1—C2—H2A 109.0 C10—C9—H9B 109.0
C1—C2—H2B 109.0 C11—C10—C9 123.21 (15)
C1—C6—C7 109.80 (11) C11—C10—H10 118.4
C2—C1—C14 113.86 (12) C11—C12—C13 114.63 (14)
C2—C1—C6 112.91 (12) C11—C12—H12A 108.6
C2—C3—H3 118.2 C11—C12—H12B 108.6
C3—C2—C1 113.04 (15) C12—C11—H11 118.1
C3—C2—H2A 109.0 C12—C13—C14 114.86 (12)
C3—C2—H2B 109.0 C12—C13—C8 116.47 (12)
C3—C4—C5 124.00 (17) C13—C12—H12A 108.6
C3—C4—H4 118.0 C13—C12—H12B 108.6
C4—C3—C2 123.59 (18) C13—C14—H14A 111.3
C4—C3—H3 118.2 C13—C14—H14B 111.3
C4—C5—C6 115.07 (16) C13—C8—C7 100.45 (10)
C4—C5—H5A 108.5 C14—C1—C6 101.55 (10)
C4—C5—H5B 108.5 C14—C13—C8 109.40 (10)
C5—C4—H4 118.0 H12A—C12—H12B 107.6
C5—C6—C1 115.79 (13) H14A—C14—H14B 109.2
C5—C6—C7 115.37 (13) H2A—C2—H2B 107.8
C6—C5—H5A 108.5 H5A—C5—H5B 107.5
C6—C5—H5B 108.5 H7A—C7—H7B 109.1
C6—C7—C8 103.06 (11) H9A—C9—H9B 107.8
F1—C1—C14—C13 129.67 (11) C6—O2—C13—C14 −52.46 (11)
F1—C1—C2—C3 −78.24 (18) C6—O2—C13—C8 59.99 (11)
O1—C8—C7—C6 127.74 (11) C7—C6—C1—C14 61.64 (13)
O1—C8—C9—C10 −74.33 (17) C7—C6—C1—C2 −176.04 (12)
O2—C13—C12—C11 −88.81 (15) C7—C6—C1—F1 −56.23 (14)
O2—C13—C14—C1 23.37 (12) C7—C6—C5—C4 152.45 (15)
O2—C13—C8—C7 −43.94 (11) C7—C8—C9—C10 156.88 (14)
O2—C13—C8—C9 74.02 (13) C8—C13—C12—C11 24.79 (18)
O2—C13—C8—O1 −164.13 (10) C8—C13—C14—C1 −81.47 (12)
O2—C6—C1—C14 −45.18 (11) C8—C9—C10—C11 −26.7 (2)
O2—C6—C1—C2 77.13 (13) C9—C8—C7—C6 −105.25 (13)
O2—C6—C1—F1 −163.06 (10) C12—C11—C10—C9 3.5 (3)
O2—C6—C5—C4 −89.78 (17) C12—C13—C14—C1 145.38 (11)
O2—C6—C7—C8 24.13 (13) C12—C13—C8—C7 −164.63 (11)
C1—C2—C3—C4 −23.8 (3) C12—C13—C8—C9 −46.66 (16)
C1—C6—C5—C4 22.3 (2) C12—C13—C8—O1 75.19 (14)
C1—C6—C7—C8 −79.56 (13) C13—C12—C11—C10 −2.2 (2)
C2—C1—C14—C13 −108.60 (13) C13—C8—C7—C6 11.85 (13)
C5—C4—C3—C2 2.2 (4) C13—C8—C9—C10 46.01 (18)
C5—C6—C1—C14 −165.54 (13) C13—O2—C6—C1 60.29 (11)
C5—C6—C1—C2 −43.22 (17) C13—O2—C6—C5 −177.19 (12)
C5—C6—C1—F1 76.59 (15) C13—O2—C6—C7 −52.26 (11)
C5—C6—C7—C8 147.40 (13) C14—C1—C2—C3 157.92 (15)
C6—C1—C14—C13 13.05 (12) C14—C13—C12—C11 154.56 (13)
C6—C1—C2—C3 42.79 (19) C14—C13—C8—C7 63.06 (13)
C6—C5—C4—C3 −1.3 (3) C14—C13—C8—C9 −178.98 (12)
C6—O2—C13—C12 −176.26 (11) C14—C13—C8—O1 −57.12 (14)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1···O2i 0.82 2.14 2.9554 (14) 177

Symmetry codes: (i) −x+2, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2740).

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
  2. Banks, R. E., Mohialdin-Khaffaf, S. N., Lal, G. S., Sharif, I. & Syvret, R. G. (1992). J. Chem. Soc. Chem. Commun. pp. 595–596.
  3. Bégué, J.-P. & Bonnet-Delpon, D. (2006). J. Fluorine Chem. 127, 992–1012.
  4. Bruker (1998). SMART and SAINT Bruker AXS Inc. Madison. Wisconsin, USA.
  5. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  6. Kirsch, P. (2004). Modern Fluoroorganic Chemistry: Synthesis, Reactivity, Applications Weinheim: Wiley-VCH.
  7. Mehta, G. & Sen, S. (2010). Eur. J. Org. Chem. pp. 3387–3394.
  8. Mehta, G., Sen, S. & Ramesh, S. S. (2007). Eur. J. Org. Chem. pp. 423–436.
  9. Middleton, W. J. (1975). J. Org. Chem. 40, 574–578.
  10. Müller, K., Faeh, C. & Diederich, F. (2007). Science, 317, 1881–1886. [DOI] [PubMed]
  11. Olah, G. A., Welch, J. T., Vankar, Y. D., Nojima, M., Kerekes, I. & Olah, J. A. (1979). J. Org. Chem. 44, 3872–3881.
  12. Sheldrick, G. M. (2003). SADABS University of Göttingen, Germany.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  15. Watkin, D. M., Pearce, L. & Prout, C. K. (1993). CAMERON Chemical Crystallography Laboratory, University of Oxford, England.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811026857/is2740sup1.cif

e-67-o1985-sup1.cif (23.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811026857/is2740Isup2.hkl

e-67-o1985-Isup2.hkl (118.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811026857/is2740Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES