Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jul 9;67(Pt 8):o1987. doi: 10.1107/S1600536811026687

1,1-Dibenzyl-3-(4-fluoro­benzo­yl)thio­urea

Mohd Faizal Md Nasir a, Ibrahim N Hassan a,*, Wan Ramli Wan Daud b,a, Bohari M Yamin c, Mohammad B Kassim c,a
PMCID: PMC3213443  PMID: 22091022

Abstract

In the title compound, C22H19FN2OS, the 2-fluoro­benzoyl group adopts a trans conformation with respect to the thiono S atom across the N—C bond. In the crystal, inter­molecular N—H⋯S, C—H⋯S and C—H⋯O hydrogen bonds link the mol­ecules, forming a two-dimensional network parallel to (101).

Related literature

For standard bond lengths, see: Allen et al. (1987). For related structures, see: Nasir et al. (2011); Yamin & Hassan (2004); Hassan et al. (2008a ,b ,c , 2009). For the synthesis, see: Hassan et al. (2008a ).graphic file with name e-67-o1987-scheme1.jpg

Experimental

Crystal data

  • C22H19FN2OS

  • M r = 378.45

  • Monoclinic, Inline graphic

  • a = 10.683 (3) Å

  • b = 7.026 (2) Å

  • c = 26.435 (7) Å

  • β = 101.100 (6)°

  • V = 1946.9 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 298 K

  • 0.42 × 0.21 × 0.18 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000) T min = 0.925, T max = 0.967

  • 8644 measured reflections

  • 3425 independent reflections

  • 2659 reflections with I > 2σ(I)

  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.059

  • wR(F 2) = 0.138

  • S = 1.15

  • 3425 reflections

  • 244 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), XP in SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL and PLATON.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811026687/dn2702sup1.cif

e-67-o1987-sup1.cif (25.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811026687/dn2702Isup2.hkl

e-67-o1987-Isup2.hkl (168KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811026687/dn2702Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯S1i 0.86 2.61 3.422 (2) 159
C1—H1A⋯S1i 0.93 2.87 3.727 (3) 154
C4—H4⋯O1ii 0.93 2.50 3.322 (4) 147

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank Universiti Kebangsaan Malaysia for providing facilities and grants (postdoctoral for INH, UKM-GUP-BTT-07–30-190 and UKM-OUP-TK-16– 73/2010&2011 for MBK sabbatical leave). They also expresstheir appreciation to the Kementerian Pengajian Tinggi, Malaysia, for the research fund No. UKM-ST-06-FRGS0111–2009.

supplementary crystallographic information

Comment

The title compound, I, is a thiourea derivative of dibenzylamine analogous to our previous reported, 1,1-sibenzyl-3-(3-chlorobenzoyl)thiourea, II (Nasir et al. 2011). The molecule maintains the the same trans and cis conformation for both the 3-fluorobenzoyl and the dibenzylamine groups, respectively, relative to the S atom across the N2—C8 bond (Fig 1). The dihedral angle between the phenyl ring, (C1—C6), and the thiourea fragment, (S1/N1/N2/C8) is 70.95 (13)° , whereas in II was 72.9 (2)°. The bond lengths and angles in the molecules are in normal ranges (Allen et al., 1987) and comparable with those of II. However, the C=S bond length [1.678 (2)Å] is slightly longer than that of (II) [1.672 (6)Å]

Both phenyl rings, [C10/C11/C12/C13/C14/C15] and [C17/C18/C19/C20/C21/C22] are essentially planar and are twisted to each other by a dihedral angle of 22.4 (4)°. The intermolecular N1—H1···S1, C1—H1A···S and C4—H4···O1 hydrogen bonds (Table 1,) links the molecules into two dimensional ribbon parallel to the (1 0 1) plane (Fig 2).

Experimental

The title compound was synthesized according to a previously reported compound (Hassan et al., 2008a). A colourless crystal, suitable for X-ray crystallography, was obtained by a slow evaporation from ethanolic solution at room temperature (yield 87%).

Refinement

H atoms of C and N atoms were positioned geometrically and allowed to ride on their parent atoms, with Uiso= 1.2Ueq (C) for aromatic 0.93 Å, Uiso = 1.2Ueq (C) for CH2 0.97 Å, Uiso = 1.2Ueq (N) for N—H 0.86 Å.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), with the atoms labeling scheme and displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

Partial packing of (I) view down the b axis. H bonds are shown as dashed lines. H atoms not involved in hydrogen bondings have been omitted for clarity.

Crystal data

C22H19FN2OS F(000) = 792
Mr = 378.45 Dx = 1.291 Mg m3
Monoclinic, P21/n Melting point: 410 K
Hall symbol: -P 2yn Mo Kα radiation, λ = 0.71073 Å
a = 10.683 (3) Å Cell parameters from 2659 reflections
b = 7.026 (2) Å θ = 2.0–25.0°
c = 26.435 (7) Å µ = 0.19 mm1
β = 101.100 (6)° T = 298 K
V = 1946.9 (10) Å3 Block, colourless
Z = 4 0.42 × 0.21 × 0.18 mm

Data collection

Bruker SMART APEX CCD area-detector diffractometer 3425 independent reflections
Radiation source: fine-focus sealed tube 2659 reflections with I > 2σ(I)
graphite Rint = 0.027
ω scans θmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 2000) h = −12→8
Tmin = 0.925, Tmax = 0.967 k = −8→8
8644 measured reflections l = −31→28

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138 H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.0542P)2 + 0.5146P] where P = (Fo2 + 2Fc2)/3
3425 reflections (Δ/σ)max < 0.001
244 parameters Δρmax = 0.25 e Å3
0 restraints Δρmin = −0.23 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
F1 0.8992 (2) −0.7024 (3) 0.17795 (9) 0.1137 (8)
S1 0.47635 (8) 0.26603 (10) 0.02677 (3) 0.0641 (3)
O1 0.5719 (2) 0.0400 (3) 0.17142 (7) 0.0736 (6)
N1 0.5164 (2) −0.0377 (3) 0.08698 (7) 0.0502 (6)
H1 0.5210 −0.1222 0.0639 0.060*
N2 0.3452 (2) 0.1514 (3) 0.09743 (7) 0.0453 (5)
C1 0.6626 (3) −0.3835 (4) 0.11002 (10) 0.0570 (7)
H1A 0.6047 −0.3773 0.0789 0.068*
C2 0.7407 (3) −0.5402 (5) 0.12067 (12) 0.0697 (8)
H2 0.7369 −0.6391 0.0970 0.084*
C3 0.8236 (3) −0.5463 (5) 0.16670 (13) 0.0742 (9)
C4 0.8339 (3) −0.4041 (6) 0.20216 (12) 0.0807 (10)
H4 0.8924 −0.4120 0.2331 0.097*
C5 0.7554 (3) −0.2481 (5) 0.19116 (10) 0.0694 (9)
H5 0.7605 −0.1501 0.2151 0.083*
C6 0.6688 (2) −0.2352 (4) 0.14481 (9) 0.0495 (6)
C7 0.5840 (2) −0.0665 (4) 0.13658 (9) 0.0507 (7)
C8 0.4407 (3) 0.1238 (3) 0.07298 (8) 0.0460 (6)
C9 0.2742 (3) 0.3312 (4) 0.09357 (10) 0.0532 (7)
H9A 0.1842 0.3052 0.0815 0.064*
H9B 0.3027 0.4123 0.0683 0.064*
C10 0.2914 (3) 0.4349 (3) 0.14432 (9) 0.0482 (6)
C11 0.4099 (3) 0.4550 (4) 0.17540 (11) 0.0627 (8)
H11 0.4801 0.3968 0.1659 0.075*
C12 0.4261 (4) 0.5594 (5) 0.22019 (12) 0.0768 (10)
H12 0.5069 0.5718 0.2406 0.092*
C13 0.3240 (4) 0.6450 (4) 0.23477 (12) 0.0796 (10)
H13 0.3351 0.7164 0.2649 0.096*
C14 0.2052 (4) 0.6251 (4) 0.20481 (13) 0.0776 (10)
H14 0.1352 0.6823 0.2148 0.093*
C15 0.1887 (3) 0.5196 (4) 0.15949 (11) 0.0625 (8)
H15 0.1076 0.5062 0.1393 0.075*
C16 0.2919 (3) 0.0015 (4) 0.12613 (9) 0.0506 (7)
H16A 0.2790 0.0517 0.1589 0.061*
H16B 0.3517 −0.1036 0.1330 0.061*
C17 0.1667 (3) −0.0689 (4) 0.09543 (9) 0.0521 (7)
C18 0.0539 (3) −0.0329 (5) 0.11120 (12) 0.0716 (9)
H18 0.0539 0.0402 0.1405 0.086*
C19 −0.0598 (3) −0.1044 (7) 0.08383 (17) 0.0976 (12)
H19 −0.1357 −0.0802 0.0950 0.117*
C20 −0.0607 (5) −0.2105 (7) 0.04053 (17) 0.1034 (14)
H20 −0.1371 −0.2595 0.0224 0.124*
C21 0.0496 (5) −0.2446 (5) 0.02384 (13) 0.0921 (12)
H21 0.0482 −0.3150 −0.0060 0.111*
C22 0.1643 (3) −0.1750 (4) 0.05112 (11) 0.0680 (8)
H22 0.2398 −0.1996 0.0397 0.082*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
F1 0.1048 (16) 0.1189 (18) 0.1105 (16) 0.0546 (14) 0.0040 (13) 0.0346 (14)
S1 0.1037 (6) 0.0484 (4) 0.0428 (4) −0.0095 (4) 0.0210 (4) 0.0047 (3)
O1 0.0912 (15) 0.0817 (15) 0.0405 (10) 0.0164 (12) −0.0058 (10) −0.0154 (10)
N1 0.0710 (14) 0.0460 (12) 0.0316 (10) 0.0060 (11) 0.0050 (10) −0.0024 (9)
N2 0.0605 (13) 0.0358 (11) 0.0379 (11) 0.0003 (10) 0.0055 (10) 0.0029 (8)
C1 0.0627 (18) 0.0552 (17) 0.0482 (15) 0.0041 (15) −0.0013 (13) 0.0088 (13)
C2 0.075 (2) 0.063 (2) 0.0670 (19) 0.0095 (17) 0.0033 (16) 0.0058 (15)
C3 0.064 (2) 0.087 (2) 0.072 (2) 0.0230 (18) 0.0127 (17) 0.0279 (19)
C4 0.064 (2) 0.121 (3) 0.0510 (18) 0.020 (2) −0.0025 (15) 0.020 (2)
C5 0.0630 (18) 0.099 (3) 0.0424 (15) 0.0080 (19) 0.0008 (14) 0.0019 (15)
C6 0.0500 (15) 0.0624 (17) 0.0360 (13) −0.0023 (14) 0.0080 (11) 0.0092 (12)
C7 0.0567 (16) 0.0580 (17) 0.0350 (13) −0.0042 (14) 0.0027 (12) −0.0001 (12)
C8 0.0644 (17) 0.0389 (14) 0.0309 (12) −0.0067 (13) −0.0007 (12) −0.0060 (10)
C9 0.0685 (18) 0.0413 (15) 0.0468 (14) 0.0062 (14) 0.0038 (13) 0.0037 (11)
C10 0.0657 (17) 0.0346 (13) 0.0452 (14) −0.0024 (13) 0.0125 (13) 0.0041 (11)
C11 0.072 (2) 0.0539 (18) 0.0614 (17) −0.0025 (15) 0.0122 (15) −0.0097 (14)
C12 0.101 (3) 0.065 (2) 0.0594 (19) −0.012 (2) 0.0029 (18) −0.0140 (16)
C13 0.143 (3) 0.0475 (19) 0.0521 (18) −0.005 (2) 0.029 (2) −0.0051 (14)
C14 0.118 (3) 0.0539 (19) 0.074 (2) 0.018 (2) 0.051 (2) 0.0056 (16)
C15 0.076 (2) 0.0505 (17) 0.0659 (18) 0.0077 (16) 0.0252 (16) 0.0086 (14)
C16 0.0652 (17) 0.0459 (15) 0.0415 (13) 0.0018 (13) 0.0126 (12) 0.0053 (11)
C17 0.0682 (18) 0.0428 (15) 0.0455 (14) −0.0060 (14) 0.0114 (13) 0.0071 (12)
C18 0.074 (2) 0.078 (2) 0.0655 (19) −0.0069 (18) 0.0196 (17) 0.0071 (16)
C19 0.067 (2) 0.127 (4) 0.098 (3) −0.021 (2) 0.014 (2) 0.022 (3)
C20 0.100 (3) 0.116 (3) 0.083 (3) −0.051 (3) −0.011 (2) 0.022 (2)
C21 0.135 (4) 0.074 (2) 0.060 (2) −0.038 (3) 0.001 (2) −0.0021 (17)
C22 0.092 (2) 0.0541 (17) 0.0564 (17) −0.0092 (17) 0.0109 (16) −0.0003 (14)

Geometric parameters (Å, °)

F1—C3 1.360 (4) C10—C11 1.376 (4)
S1—C8 1.678 (3) C11—C12 1.375 (4)
O1—C7 1.213 (3) C11—H11 0.9300
N1—C7 1.385 (3) C12—C13 1.365 (5)
N1—C8 1.401 (3) C12—H12 0.9300
N1—H1 0.8600 C13—C14 1.367 (5)
N2—C8 1.323 (3) C13—H13 0.9300
N2—C9 1.467 (3) C14—C15 1.391 (4)
N2—C16 1.475 (3) C14—H14 0.9300
C1—C2 1.378 (4) C15—H15 0.9300
C1—C6 1.383 (4) C16—C17 1.508 (4)
C1—H1A 0.9300 C16—H16A 0.9700
C2—C3 1.361 (4) C16—H16B 0.9700
C2—H2 0.9300 C17—C18 1.372 (4)
C3—C4 1.360 (5) C17—C22 1.385 (4)
C4—C5 1.376 (4) C18—C19 1.383 (5)
C4—H4 0.9300 C18—H18 0.9300
C5—C6 1.389 (4) C19—C20 1.364 (6)
C5—H5 0.9300 C19—H19 0.9300
C6—C7 1.482 (4) C20—C21 1.356 (6)
C9—C10 1.507 (3) C20—H20 0.9300
C9—H9A 0.9700 C21—C22 1.386 (5)
C9—H9B 0.9700 C21—H21 0.9300
C10—C15 1.375 (4) C22—H22 0.9300
C7—N1—C8 122.6 (2) C12—C11—C10 121.2 (3)
C7—N1—H1 118.7 C12—C11—H11 119.4
C8—N1—H1 118.7 C10—C11—H11 119.4
C8—N2—C9 122.0 (2) C13—C12—C11 120.2 (3)
C8—N2—C16 123.8 (2) C13—C12—H12 119.9
C9—N2—C16 113.9 (2) C11—C12—H12 119.9
C2—C1—C6 121.1 (3) C12—C13—C14 119.6 (3)
C2—C1—H1A 119.4 C12—C13—H13 120.2
C6—C1—H1A 119.4 C14—C13—H13 120.2
C3—C2—C1 118.2 (3) C13—C14—C15 120.2 (3)
C3—C2—H2 120.9 C13—C14—H14 119.9
C1—C2—H2 120.9 C15—C14—H14 119.9
C4—C3—F1 118.4 (3) C10—C15—C14 120.4 (3)
C4—C3—C2 123.0 (3) C10—C15—H15 119.8
F1—C3—C2 118.5 (3) C14—C15—H15 119.8
C3—C4—C5 118.3 (3) N2—C16—C17 110.32 (19)
C3—C4—H4 120.8 N2—C16—H16A 109.6
C5—C4—H4 120.8 C17—C16—H16A 109.6
C4—C5—C6 120.9 (3) N2—C16—H16B 109.6
C4—C5—H5 119.5 C17—C16—H16B 109.6
C6—C5—H5 119.5 H16A—C16—H16B 108.1
C1—C6—C5 118.4 (3) C18—C17—C22 118.8 (3)
C1—C6—C7 123.7 (2) C18—C17—C16 121.1 (3)
C5—C6—C7 117.8 (3) C22—C17—C16 120.1 (3)
O1—C7—N1 121.1 (2) C17—C18—C19 120.5 (3)
O1—C7—C6 122.2 (2) C17—C18—H18 119.7
N1—C7—C6 116.7 (2) C19—C18—H18 119.7
N2—C8—N1 116.7 (2) C20—C19—C18 120.1 (4)
N2—C8—S1 124.9 (2) C20—C19—H19 120.0
N1—C8—S1 118.3 (2) C18—C19—H19 120.0
N2—C9—C10 112.4 (2) C21—C20—C19 120.2 (4)
N2—C9—H9A 109.1 C21—C20—H20 119.9
C10—C9—H9A 109.1 C19—C20—H20 119.9
N2—C9—H9B 109.1 C20—C21—C22 120.3 (4)
C10—C9—H9B 109.1 C20—C21—H21 119.8
H9A—C9—H9B 107.8 C22—C21—H21 119.8
C15—C10—C11 118.4 (3) C17—C22—C21 120.0 (3)
C15—C10—C9 120.1 (3) C17—C22—H22 120.0
C11—C10—C9 121.5 (3) C21—C22—H22 120.0

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C9—H9B···S1 0.97 2.55 3.076 (3) 114
N1—H1···S1i 0.86 2.61 3.422 (2) 159
C1—H1A···S1i 0.93 2.87 3.727 (3) 154
C4—H4···O1ii 0.93 2.50 3.322 (4) 147

Symmetry codes: (i) −x+1, −y, −z; (ii) −x+3/2, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2702).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bruker (2000). SADABS, SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  4. Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2008a). Acta Cryst. E64, o1727. [DOI] [PMC free article] [PubMed]
  5. Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2008b). Acta Cryst. E64, o2083. [DOI] [PMC free article] [PubMed]
  6. Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2008c). Acta Cryst. E64, o2167. [DOI] [PMC free article] [PubMed]
  7. Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2009). Acta Cryst. E65, o3078. [DOI] [PMC free article] [PubMed]
  8. Nasir, M. F. M., Hassan, I. N., Wan Daud, W. R., Yamin, B. M. & Kassim, M. B. (2011). Acta Cryst. E67, o1218. [DOI] [PMC free article] [PubMed]
  9. Sheldrick, G. M. (2000). SADABS University of Göttingen, Germany.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  12. Yamin, B. M. & Hassan, I. N. (2004). Acta Cryst. E60, o2513–o2514.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811026687/dn2702sup1.cif

e-67-o1987-sup1.cif (25.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811026687/dn2702Isup2.hkl

e-67-o1987-Isup2.hkl (168KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811026687/dn2702Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES