Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jul 9;67(Pt 8):o1992–o1993. doi: 10.1107/S1600536811026717

2,2-Diphenyl­acetamide

Jerry P Jasinski a,*, James A Golen a, M S Siddegowda b, H S Yathirajan b, M T Swamy c
PMCID: PMC3213448  PMID: 22091027

Abstract

In the title compound, C14H13NO, which has two mol­ecules in the asymmetric unit, the dihedral angles between the mean planes of the benzene rings are 84.6 (7) and 85.0 (6)°. N—H⋯O hydrogen bonds [forming R 2 2(8) ring motifs] and C—H⋯O hydrogen bonds dominate the crystal packing, forming zigzag chains parallel to the a axis. In addition, weak inter­molecular C—H⋯π inter­actions are observed.

Related literature

For the synthesis and anti­mycobacterial activity of 2,2-diphenyl­acetamide derivatives, see: Guzel et al. (2006). For related structures, see: Akkurt et al. (2007); Dutkiewicz et al. (2010); Gerkin (1998); Krigbaum et al. (1968); Narasegowda et al. (2005); Yathirajan et al. (2005). For standard bond lengths, see: Allen et al. (1987).graphic file with name e-67-o1992-scheme1.jpg

Experimental

Crystal data

  • C14H13NO

  • M r = 211.25

  • Monoclinic, Inline graphic

  • a = 5.1687 (3) Å

  • b = 28.5511 (13) Å

  • c = 7.8006 (4) Å

  • β = 98.152 (5)°

  • V = 1139.52 (10) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.61 mm−1

  • T = 173 K

  • 0.40 × 0.25 × 0.20 mm

Data collection

  • Oxford Diffraction Xcalibur Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010) T min = 0.792, T max = 0.887

  • 6490 measured reflections

  • 3978 independent reflections

  • 3869 reflections with I > 2σ(I)

  • R int = 0.017

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.107

  • S = 1.07

  • 3978 reflections

  • 303 parameters

  • 9 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811026717/jh2307sup1.cif

e-67-o1992-sup1.cif (23.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811026717/jh2307Isup2.hkl

e-67-o1992-Isup2.hkl (195KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811026717/jh2307Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 and Cg4 are the centroids of the C3–C8 and C23–C28 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯O1i 0.89 (1) 2.20 (2) 2.9409 (17) 140 (2)
N1—H1A⋯O2ii 0.87 (1) 2.09 (1) 2.9575 (19) 177 (2)
N2—H2B⋯O1iii 0.88 (1) 2.07 (1) 2.9526 (19) 176 (2)
N2—H2A⋯O2iv 0.89 (1) 2.17 (2) 2.9407 (18) 145 (2)
N1—H1A⋯N2ii 0.87 (1) 3.06 (2) 3.7246 (18) 134 (2)
N2—H2B⋯N1iii 0.88 (1) 3.10 (2) 3.7246 (18) 130 (2)
C10—H10A⋯O1 0.95 2.50 3.093 (2) 120
C18—H18A⋯O2 0.95 2.51 3.099 (2) 120
C2—H2CCg1i 1.00 2.96 3.9379 (18) 165
C16—H16ACg4iv 1.00 2.95 3.9263 (18) 166

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

JPJ acknowledges the NSF–MRI program (grant No. CHE1039027) for funds to purchase the X-ray diffractometer. MSS thanks the University of Mysore for the research facilities and R. L. Fine Chem, Bangalore, India, for the gift sample.

supplementary crystallographic information

Comment

The synthesis and antimycobacterial activity of some new 2,2-diphenylacetamide derivatives is described (Guzel et al., 2006). The title compound is used to synthesize various biologically active and pharmaceutical compounds viz., loperamide, darifenacin, fenpiverine, etc. The crystal structures of N,N-diphenylacetamide (Krigbaum et al., 1968), 4,4'-dimethylbiphenyl-2,2'-dicarboxylic acid (Gerkin, 1998), 4'-methylbiphenyl-2-carboxylic acid (Narasegowda et al., 2005) and 4'-(2-butyl-4-chloro-5-formylimidazol-1-ylmethyl)biphenyl-2-carbonitrile (Yathirajan et al., 2005), 2-hydroxy-N-(3-oxo-1-thia-4-azaspiro[4.5]dec-4-yl)-2,2-diphenylacetamide (Akkurt et al., 2007) and 2-Chloro-N-[4-chloro-2-(2-chlorobenzoyl)phenyl]acetamide (Dutkiewicz et al., 2010) have been reported. In view of the importance of the title compound, (I), C14H13NO, and in order to determine the conformation of this molecule, a crystal structure determination has been carried out.

In the title compound, (I), with two molecules in the asymmetric unit, the dihedral angle between the mean planes of the benzene rings is 84.6 (7)° or 85.0 (6)°, respectively (Fig. 1). Extensive N—H···O (forming an R22(8) ring-motif) intermolecular and C—H···O intramolecular hydrogen bonds and weak C—H···Cg π-ring intermolecular interactions (dominate the crystal packing forming a zigzag chain along [010] (Table 1, Fg. 2).

Experimental

The title compound was obtained as a gift sample from R. L. Fine Chem, Bangalore. X-ray quality crystals were obtained by slow evaporation of 1:1 acetone:methanol solution (m.p.: 430-433 K).

Refinement

The N–H atoms wwere located by Fourier analysis and refined isotropically with DFIX = 0.87Å. All of the remaining H atoms were placed in their calculated positions and then refined using the riding model with Atom–H lengths of 0.95Å or 1.00Å (CH). Isotropic displacement parameters for these atoms were set to 1.19-1.20 (CH), times Ueq of the parent atom.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound showing the atom labeling scheme and 50% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

Packing diagram of the title compound viewed down the a axis. Dashed lines represent N—H···O hydrogen bonds.

Crystal data

C14H13NO F(000) = 448
Mr = 211.25 Dx = 1.231 Mg m3
Monoclinic, P21 Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2yb Cell parameters from 5082 reflections
a = 5.1687 (3) Å θ = 4.6–70.4°
b = 28.5511 (13) Å µ = 0.61 mm1
c = 7.8006 (4) Å T = 173 K
β = 98.152 (5)° Block, colorless
V = 1139.52 (10) Å3 0.40 × 0.25 × 0.20 mm
Z = 4

Data collection

Oxford Diffraction Xcalibur Eos Gemini diffractometer 3978 independent reflections
Radiation source: Enhance (Cu) X-ray Source 3869 reflections with I > 2σ(I)
graphite Rint = 0.017
Detector resolution: 16.1500 pixels mm-1 θmax = 70.5°, θmin = 5.7°
ω scans h = −6→6
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010) k = −34→34
Tmin = 0.792, Tmax = 0.887 l = −9→8
6490 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.107 w = 1/[σ2(Fo2) + (0.0695P)2 + 0.1057P] where P = (Fo2 + 2Fc2)/3
S = 1.07 (Δ/σ)max = 0.027
3978 reflections Δρmax = 0.21 e Å3
303 parameters Δρmin = −0.20 e Å3
9 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0118 (13)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.9797 (3) 0.54261 (6) 0.6365 (2) 0.0459 (3)
H1B 1.121 (3) 0.5307 (8) 0.600 (3) 0.055*
H1A 0.984 (5) 0.5667 (6) 0.706 (3) 0.055*
O2 1.0081 (2) 0.62240 (4) −0.11977 (17) 0.0465 (3)
O1 0.5496 (2) 0.53784 (5) 0.64407 (16) 0.0459 (3)
N2 0.5779 (3) 0.61736 (6) −0.1120 (2) 0.0469 (4)
H2B 0.561 (5) 0.5935 (6) −0.185 (3) 0.056*
H2A 0.431 (3) 0.6281 (9) −0.080 (3) 0.056*
C1 0.7494 (3) 0.52226 (5) 0.5965 (2) 0.0359 (3)
C2 0.7440 (3) 0.47718 (6) 0.4902 (2) 0.0377 (3)
H2C 0.9097 0.4758 0.4381 0.045*
C3 0.5167 (3) 0.47744 (6) 0.3416 (2) 0.0406 (4)
C4 0.4550 (5) 0.51789 (8) 0.2469 (3) 0.0678 (6)
H4A 0.5534 0.5456 0.2759 0.081*
C5 0.2520 (6) 0.51860 (10) 0.1106 (4) 0.0824 (8)
H5A 0.2130 0.5467 0.0469 0.099*
C6 0.1062 (5) 0.47893 (10) 0.0666 (3) 0.0683 (6)
H6A −0.0353 0.4796 −0.0254 0.082*
C7 0.1684 (4) 0.43851 (9) 0.1575 (3) 0.0577 (5)
H7A 0.0707 0.4108 0.1272 0.069*
C8 0.3724 (4) 0.43764 (7) 0.2933 (2) 0.0461 (4)
H8A 0.4138 0.4092 0.3543 0.055*
C9 0.7419 (3) 0.43519 (5) 0.6105 (2) 0.0375 (3)
C10 0.5760 (4) 0.43225 (7) 0.7334 (3) 0.0518 (4)
H10A 0.4577 0.4571 0.7451 0.062*
C11 0.5795 (5) 0.39352 (9) 0.8402 (3) 0.0606 (5)
H11A 0.4630 0.3921 0.9239 0.073*
C12 0.7488 (5) 0.35715 (8) 0.8270 (3) 0.0607 (5)
H12A 0.7521 0.3309 0.9020 0.073*
C13 0.9135 (5) 0.35925 (9) 0.7036 (4) 0.0738 (7)
H13A 1.0288 0.3340 0.6910 0.089*
C14 0.9117 (4) 0.39807 (8) 0.5981 (3) 0.0607 (5)
H14A 1.0294 0.3994 0.5151 0.073*
C15 0.8083 (3) 0.63780 (6) −0.0712 (2) 0.0355 (3)
C16 0.8143 (3) 0.68289 (5) 0.0360 (2) 0.0367 (3)
H16A 0.6495 0.6841 0.0892 0.044*
C17 0.8148 (3) 0.72535 (6) −0.0840 (2) 0.0373 (3)
C18 0.9825 (4) 0.72830 (7) −0.2076 (2) 0.0505 (4)
H18A 1.1005 0.7034 −0.2201 0.061*
C19 0.9779 (4) 0.76758 (8) −0.3129 (3) 0.0594 (5)
H19A 1.0941 0.7694 −0.3967 0.071*
C20 0.8089 (5) 0.80352 (7) −0.2976 (3) 0.0585 (5)
H20A 0.8061 0.8301 −0.3710 0.070*
C21 0.6427 (5) 0.80100 (8) −0.1751 (3) 0.0654 (6)
H21A 0.5257 0.8260 −0.1627 0.078*
C22 0.6461 (4) 0.76191 (7) −0.0699 (3) 0.0533 (5)
H22A 0.5294 0.7603 0.0137 0.064*
C23 1.0422 (3) 0.68233 (6) 0.1827 (2) 0.0404 (3)
C24 1.1076 (5) 0.64165 (8) 0.2764 (3) 0.0702 (6)
H24A 1.0119 0.6137 0.2462 0.084*
C25 1.3098 (6) 0.64110 (11) 0.4128 (3) 0.0848 (8)
H25A 1.3508 0.6129 0.4757 0.102*
C26 1.4513 (5) 0.68078 (11) 0.4580 (3) 0.0696 (6)
H26A 1.5922 0.6801 0.5505 0.084*
C27 1.3884 (4) 0.72136 (9) 0.3690 (3) 0.0608 (5)
H27A 1.4847 0.7491 0.4008 0.073*
C28 1.1853 (4) 0.72226 (7) 0.2329 (2) 0.0468 (4)
H28A 1.1432 0.7508 0.1727 0.056*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0328 (6) 0.0411 (8) 0.0651 (9) −0.0033 (6) 0.0110 (6) −0.0140 (7)
O2 0.0316 (5) 0.0435 (7) 0.0654 (7) −0.0009 (5) 0.0106 (5) −0.0159 (5)
O1 0.0321 (5) 0.0424 (6) 0.0639 (7) −0.0001 (5) 0.0093 (5) −0.0150 (6)
N2 0.0325 (6) 0.0435 (8) 0.0652 (9) −0.0021 (6) 0.0086 (6) −0.0147 (7)
C1 0.0322 (7) 0.0325 (8) 0.0430 (8) 0.0009 (5) 0.0051 (6) −0.0007 (6)
C2 0.0361 (7) 0.0352 (8) 0.0436 (8) −0.0012 (6) 0.0116 (6) −0.0032 (7)
C3 0.0436 (8) 0.0388 (9) 0.0407 (8) −0.0019 (6) 0.0107 (6) −0.0039 (7)
C4 0.0871 (15) 0.0441 (11) 0.0663 (13) −0.0108 (10) −0.0092 (11) 0.0077 (9)
C5 0.107 (2) 0.0650 (15) 0.0660 (14) −0.0016 (14) −0.0202 (14) 0.0137 (12)
C6 0.0713 (13) 0.0847 (16) 0.0442 (10) 0.0011 (12) −0.0085 (9) −0.0065 (10)
C7 0.0624 (11) 0.0665 (13) 0.0438 (9) −0.0133 (10) 0.0061 (8) −0.0125 (9)
C8 0.0545 (9) 0.0452 (10) 0.0398 (8) −0.0061 (8) 0.0109 (7) −0.0068 (7)
C9 0.0368 (7) 0.0332 (8) 0.0423 (8) −0.0013 (6) 0.0048 (6) −0.0052 (6)
C10 0.0547 (10) 0.0487 (11) 0.0557 (10) 0.0113 (8) 0.0204 (8) 0.0036 (8)
C11 0.0734 (13) 0.0576 (11) 0.0565 (11) 0.0015 (10) 0.0284 (10) 0.0067 (10)
C12 0.0769 (13) 0.0434 (11) 0.0636 (12) 0.0004 (10) 0.0164 (10) 0.0106 (9)
C13 0.0837 (15) 0.0440 (11) 0.1012 (18) 0.0193 (11) 0.0389 (14) 0.0163 (11)
C14 0.0657 (12) 0.0439 (10) 0.0795 (14) 0.0133 (9) 0.0346 (10) 0.0054 (10)
C15 0.0327 (7) 0.0324 (7) 0.0418 (7) −0.0002 (6) 0.0066 (6) −0.0006 (6)
C16 0.0357 (7) 0.0337 (8) 0.0430 (8) −0.0020 (6) 0.0129 (6) −0.0041 (7)
C17 0.0363 (7) 0.0358 (8) 0.0399 (7) −0.0021 (6) 0.0055 (6) −0.0057 (6)
C18 0.0531 (10) 0.0481 (10) 0.0534 (10) 0.0080 (8) 0.0186 (8) 0.0042 (8)
C19 0.0686 (12) 0.0591 (12) 0.0550 (11) 0.0016 (10) 0.0245 (9) 0.0069 (10)
C20 0.0752 (13) 0.0429 (11) 0.0583 (11) −0.0010 (9) 0.0123 (10) 0.0104 (8)
C21 0.0786 (15) 0.0409 (10) 0.0818 (15) 0.0171 (9) 0.0294 (12) 0.0066 (10)
C22 0.0597 (10) 0.0404 (9) 0.0655 (11) 0.0073 (8) 0.0291 (9) 0.0050 (8)
C23 0.0451 (8) 0.0399 (9) 0.0381 (7) −0.0005 (6) 0.0123 (6) −0.0036 (7)
C24 0.0878 (16) 0.0478 (12) 0.0684 (13) −0.0088 (11) −0.0116 (12) 0.0077 (10)
C25 0.109 (2) 0.0685 (16) 0.0669 (14) 0.0064 (15) −0.0228 (14) 0.0127 (12)
C26 0.0741 (13) 0.0856 (16) 0.0441 (10) 0.0001 (12) −0.0091 (9) −0.0043 (11)
C27 0.0643 (12) 0.0720 (14) 0.0462 (9) −0.0175 (10) 0.0081 (9) −0.0141 (10)
C28 0.0553 (10) 0.0452 (10) 0.0411 (8) −0.0090 (8) 0.0112 (7) −0.0057 (7)

Geometric parameters (Å, °)

N1—C1 1.322 (2) C12—H12A 0.9500
N1—H1B 0.889 (13) C13—C14 1.380 (3)
N1—H1A 0.873 (13) C13—H13A 0.9500
O2—C15 1.2306 (19) C14—H14A 0.9500
O1—C1 1.2292 (19) C15—C16 1.533 (2)
N2—C15 1.324 (2) C16—C23 1.521 (2)
N2—H2B 0.883 (13) C16—C17 1.532 (2)
N2—H2A 0.889 (13) C16—H16A 1.0000
C1—C2 1.529 (2) C17—C22 1.375 (2)
C2—C9 1.523 (2) C17—C18 1.387 (2)
C2—C3 1.529 (2) C18—C19 1.388 (3)
C2—H2C 1.0000 C18—H18A 0.9500
C3—C8 1.382 (2) C19—C20 1.364 (3)
C3—C4 1.384 (3) C19—H19A 0.9500
C4—C5 1.384 (3) C20—C21 1.374 (4)
C4—H4A 0.9500 C20—H20A 0.9500
C5—C6 1.377 (4) C21—C22 1.384 (3)
C5—H5A 0.9500 C21—H21A 0.9500
C6—C7 1.369 (4) C22—H22A 0.9500
C6—H6A 0.9500 C23—C28 1.385 (2)
C7—C8 1.385 (3) C23—C24 1.389 (3)
C7—H7A 0.9500 C24—C25 1.382 (3)
C8—H8A 0.9500 C24—H24A 0.9500
C9—C10 1.377 (3) C25—C26 1.367 (4)
C9—C14 1.388 (3) C25—H25A 0.9500
C10—C11 1.383 (3) C26—C27 1.366 (4)
C10—H10A 0.9500 C26—H26A 0.9500
C11—C12 1.371 (3) C27—C28 1.384 (3)
C11—H11A 0.9500 C27—H27A 0.9500
C12—C13 1.373 (4) C28—H28A 0.9500
C1—N1—H1B 120.8 (16) C13—C14—C9 121.52 (19)
C1—N1—H1A 115.9 (16) C13—C14—H14A 119.2
H1B—N1—H1A 123 (2) C9—C14—H14A 119.2
C15—N2—H2B 119.8 (16) O2—C15—N2 122.28 (16)
C15—N2—H2A 123.8 (16) O2—C15—C16 120.98 (13)
H2B—N2—H2A 116 (2) N2—C15—C16 116.72 (13)
O1—C1—N1 122.46 (15) C23—C16—C17 113.57 (13)
O1—C1—C2 121.11 (14) C23—C16—C15 110.82 (13)
N1—C1—C2 116.42 (14) C17—C16—C15 109.44 (12)
C9—C2—C1 109.27 (13) C23—C16—H16A 107.6
C9—C2—C3 113.52 (13) C17—C16—H16A 107.6
C1—C2—C3 111.11 (13) C15—C16—H16A 107.6
C9—C2—H2C 107.6 C22—C17—C18 118.40 (16)
C1—C2—H2C 107.6 C22—C17—C16 119.72 (14)
C3—C2—H2C 107.6 C18—C17—C16 121.88 (14)
C8—C3—C4 117.79 (17) C17—C18—C19 120.03 (18)
C8—C3—C2 121.97 (15) C17—C18—H18A 120.0
C4—C3—C2 120.21 (16) C19—C18—H18A 120.0
C5—C4—C3 121.0 (2) C20—C19—C18 120.89 (19)
C5—C4—H4A 119.5 C20—C19—H19A 119.6
C3—C4—H4A 119.5 C18—C19—H19A 119.6
C4—C5—C6 120.5 (2) C19—C20—C21 119.51 (19)
C4—C5—H5A 119.7 C19—C20—H20A 120.2
C6—C5—H5A 119.7 C21—C20—H20A 120.2
C7—C6—C5 119.0 (2) C20—C21—C22 119.9 (2)
C7—C6—H6A 120.5 C20—C21—H21A 120.1
C5—C6—H6A 120.5 C22—C21—H21A 120.1
C6—C7—C8 120.59 (19) C17—C22—C21 121.31 (19)
C6—C7—H7A 119.7 C17—C22—H22A 119.3
C8—C7—H7A 119.7 C21—C22—H22A 119.3
C3—C8—C7 121.11 (18) C28—C23—C24 117.35 (17)
C3—C8—H8A 119.4 C28—C23—C16 121.97 (15)
C7—C8—H8A 119.4 C24—C23—C16 120.64 (16)
C10—C9—C14 117.65 (17) C25—C24—C23 121.1 (2)
C10—C9—C2 122.44 (15) C25—C24—H24A 119.5
C14—C9—C2 119.91 (15) C23—C24—H24A 119.5
C9—C10—C11 120.79 (18) C26—C25—C24 120.5 (2)
C9—C10—H10A 119.6 C26—C25—H25A 119.7
C11—C10—H10A 119.6 C24—C25—H25A 119.7
C12—C11—C10 120.97 (19) C25—C26—C27 119.4 (2)
C12—C11—H11A 119.5 C25—C26—H26A 120.3
C10—C11—H11A 119.5 C27—C26—H26A 120.3
C11—C12—C13 119.0 (2) C26—C27—C28 120.4 (2)
C11—C12—H12A 120.5 C26—C27—H27A 119.8
C13—C12—H12A 120.5 C28—C27—H27A 119.8
C12—C13—C14 120.0 (2) C27—C28—C23 121.22 (18)
C12—C13—H13A 120.0 C27—C28—H28A 119.4
C14—C13—H13A 120.0 C23—C28—H28A 119.4
O1—C1—C2—C9 −79.23 (19) O2—C15—C16—C23 −46.8 (2)
N1—C1—C2—C9 99.42 (17) N2—C15—C16—C23 135.00 (15)
O1—C1—C2—C3 46.8 (2) O2—C15—C16—C17 79.24 (18)
N1—C1—C2—C3 −134.55 (16) N2—C15—C16—C17 −99.00 (16)
C9—C2—C3—C8 −17.6 (2) C23—C16—C17—C22 −103.20 (18)
C1—C2—C3—C8 −141.21 (16) C15—C16—C17—C22 132.39 (17)
C9—C2—C3—C4 164.54 (19) C23—C16—C17—C18 76.54 (19)
C1—C2—C3—C4 40.9 (2) C15—C16—C17—C18 −47.87 (19)
C8—C3—C4—C5 1.2 (4) C22—C17—C18—C19 0.2 (3)
C2—C3—C4—C5 179.2 (2) C16—C17—C18—C19 −179.50 (18)
C3—C4—C5—C6 0.2 (5) C17—C18—C19—C20 −0.4 (3)
C4—C5—C6—C7 −1.3 (5) C18—C19—C20—C21 0.6 (4)
C5—C6—C7—C8 0.9 (4) C19—C20—C21—C22 −0.7 (4)
C4—C3—C8—C7 −1.6 (3) C18—C17—C22—C21 −0.3 (3)
C2—C3—C8—C7 −179.55 (17) C16—C17—C22—C21 179.4 (2)
C6—C7—C8—C3 0.6 (3) C20—C21—C22—C17 0.6 (4)
C1—C2—C9—C10 47.5 (2) C17—C16—C23—C28 18.5 (2)
C3—C2—C9—C10 −77.1 (2) C15—C16—C23—C28 142.15 (16)
C1—C2—C9—C14 −132.47 (18) C17—C16—C23—C24 −164.12 (19)
C3—C2—C9—C14 102.9 (2) C15—C16—C23—C24 −40.5 (2)
C14—C9—C10—C11 −0.1 (3) C28—C23—C24—C25 −0.8 (4)
C2—C9—C10—C11 179.91 (18) C16—C23—C24—C25 −178.3 (2)
C9—C10—C11—C12 0.3 (3) C23—C24—C25—C26 −0.4 (5)
C10—C11—C12—C13 −1.0 (4) C24—C25—C26—C27 1.1 (5)
C11—C12—C13—C14 1.6 (4) C25—C26—C27—C28 −0.8 (4)
C12—C13—C14—C9 −1.4 (4) C26—C27—C28—C23 −0.4 (3)
C10—C9—C14—C13 0.7 (3) C24—C23—C28—C27 1.1 (3)
C2—C9—C14—C13 −179.3 (2) C16—C23—C28—C27 178.60 (17)

Hydrogen-bond geometry (Å, °)

Cg1 and Cg4 are the centroids of the C3–C8 and C23–C28 rings, respectively.
D—H···A D—H H···A D···A D—H···A
N1—H1B···O1i 0.89 (1) 2.20 (2) 2.9409 (17) 140 (2)
N1—H1A···O2ii 0.87 (1) 2.09 (1) 2.9575 (19) 177 (2)
N2—H2B···O1iii 0.88 (1) 2.07 (1) 2.9526 (19) 176 (2)
N2—H2A···O2iv 0.89 (1) 2.17 (2) 2.9407 (18) 145 (2)
N1—H1A···N2ii 0.87 (1) 3.06 (2) 3.7246 (18) 134.(2)
N2—H2B···N1iii 0.88 (1) 3.10 (2) 3.7246 (18) 130.(2)
C10—H10A···O1 0.95 2.50 3.093 (2) 120.
C18—H18A···O2 0.95 2.51 3.099 (2) 120
C2—H2C···Cg1i 1.00 2.96 3.9379 (18) 165
C16—H16A···Cg4iv 1.00 2.95 3.9263 (18) 166

Symmetry codes: (i) x+1, y, z; (ii) x, y, z+1; (iii) x, y, z−1; (iv) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2307).

References

  1. Akkurt, M., Karaca, S., Şahin, E., Güzel, Ö., Salman, A. & İlhan, E. (2007). Acta Cryst. E63, o3379–o3380.
  2. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  3. Dutkiewicz, G., Siddaraju, B. P., Yathirajan, H. S., Narayana, B. & Kubicki, M. (2010). Acta Cryst. E66, o499. [DOI] [PMC free article] [PubMed]
  4. Gerkin, R. E. (1998). Acta Cryst. C54, 1887–1889. [DOI] [PubMed]
  5. Guzel, O., Ilhan, E. & Salman, A. (2006). Monatsh. Chem. 137, 795–801.
  6. Krigbaum, W. R., Roe, R.-J. & Woods, J. D. (1968). Acta Cryst. B24, 1304–1312.
  7. Narasegowda, R. S., Yathirajan, H. S. & Bolte, M. (2005). Acta Cryst. E61, o939–o940.
  8. Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Yathirajan, H. S., Nagaraj, B., Narasegowda, R. S., Nagaraja, P. & Bolte, M. (2005). Acta Cryst. E61, o1193–o1195. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811026717/jh2307sup1.cif

e-67-o1992-sup1.cif (23.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811026717/jh2307Isup2.hkl

e-67-o1992-Isup2.hkl (195KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811026717/jh2307Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES