Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jul 9;67(Pt 8):o1997. doi: 10.1107/S1600536811026936

2,4,6-Trimethyl­anilinium chloro­acetate

Rong Tao a,*
PMCID: PMC3213452  PMID: 22091031

Abstract

In the crystal structure of the title compound, C9H14N+·C2H2ClO2 , inter­molecular N—H⋯O inter­actions link the mol­ecules into a one-dimensional linear structure.

Related literature

The title compound was studied as part of our work to obtain potential ferroelectric phase-transition materials. For general background to ferroelectric organic frameworks, see: Ye et al. (2006, 2009); Fu et al. (2007); for phase transition of ferroelectric materials, see: Zhang et al. (2008); Zhao et al. (2008).graphic file with name e-67-o1997-scheme1.jpg

Experimental

Crystal data

  • C9H14N+·C2H2ClO2

  • M r = 229.70

  • Monoclinic, Inline graphic

  • a = 26.529 (5) Å

  • b = 4.7453 (9) Å

  • c = 22.717 (5) Å

  • β = 124.24 (3)°

  • V = 2364.2 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.20 mm

Data collection

  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) T min = 0.941, T max = 0.941

  • 11449 measured reflections

  • 2690 independent reflections

  • 1900 reflections with I > 2σ(I)

  • R int = 0.050

Refinement

  • R[F 2 > 2σ(F 2)] = 0.057

  • wR(F 2) = 0.179

  • S = 1.07

  • 2690 reflections

  • 140 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.26 e Å−3

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811026936/jh2308sup1.cif

e-67-o1997-sup1.cif (14.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811026936/jh2308Isup2.hkl

e-67-o1997-Isup2.hkl (132.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811026936/jh2308Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯O2 0.89 2.02 2.860 (2) 156
N1—H1A⋯O2i 0.89 1.88 2.748 (2) 165
N1—H1C⋯O1ii 0.89 1.93 2.809 (2) 169

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The author thanks the starter fund of Southeast University, Nanjing, China.

supplementary crystallographic information

Comment

In the crystal structure, one hydrogen-bonding network of N—H···O hydrogen bonds which established between ammonium groups and chloroacetateions, and one kind of intramolecular hydrogen bond which established between N1 and O2 (N1—H···O22.860 (2) Å) contribute to the stability of crystal packing.

In the structure, atom N1 is hydrogen bonded to there O atoms of chloroacetate ions through the normal hydrogen bonds that contain two kind of intermolecular hydrogen bond (N1—H···O2 2.860 (2)Å and N1—H···O1 2.809 (2) Å) and one kind of intramolecular hydrogen bond.

The study of ferroelectric materials has received much attention. Some materials have predominantly dielectric-ferroelectric performance. The title compound was studied as part of our work to obtain potential ferroelectric phase-transition materials (Ye et al., 2006; Fu et al., 2007; Zhao et al. 2008; Zhang et al., 2008; Ye et al., 2009). Unluckily, the compound has no dielectric anomalies in the temperature range 93–453 K, suggesting that it might be only a paraelectric.

Experimental

For the preparation of the title compound, the chloroacetic acid(0.5 g) was added to the ethanol solution of the 2,4,6-trimethylaniline, The resulting precipitate was filtered. Colorless crystals suitable for X-ray analysis were formed after several weeks by slow evaporation of the solvent at room temperature.

Refinement

Positional parameters of all the H atoms bonded to C atoms were calculated geometrically and were allowed to ride on the C atoms to which they are bonded, with Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(C) for the methyl group. The other H bonded to N atoms were calculated geometrically and were allowed to ride on the N atoms with Uiso(H) = 1.2Ueq(N).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with the atomic numbering scheme.Displacement ellipsoids are drawn at the 30%

Fig. 2.

Fig. 2.

A view of the packing of the title compound, stacking along the b axis. Dashed lines indicate hydrogen bonds.

Crystal data

C9H14N+·C2H2ClO2 F(000) = 976
Mr = 229.70 Dx = 1.291 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 2690 reflections
a = 26.529 (5) Å θ = 3.1–27.5°
b = 4.7453 (9) Å µ = 0.30 mm1
c = 22.717 (5) Å T = 293 K
β = 124.24 (3)° Prism, colourless
V = 2364.2 (8) Å3 0.20 × 0.20 × 0.20 mm
Z = 8

Data collection

Rigaku SCXmini diffractometer 2690 independent reflections
Radiation source: fine-focus sealed tube 1900 reflections with I > 2σ(I)
graphite Rint = 0.050
Detector resolution: 13.6612 pixels mm-1 θmax = 27.5°, θmin = 3.1°
CCD_Profile_fitting scans h = −34→34
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) k = −6→5
Tmin = 0.941, Tmax = 0.941 l = −29→29
11449 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.179 H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0913P)2 + 1.3591P] where P = (Fo2 + 2Fc2)/3
2690 reflections (Δ/σ)max < 0.001
140 parameters Δρmax = 0.30 e Å3
0 restraints Δρmin = −0.26 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.24425 (10) −0.0238 (5) 0.67051 (12) 0.0389 (6)
H1 0.2600 −0.1541 0.7074 0.047*
C2 0.28257 (11) 0.0902 (5) 0.65328 (12) 0.0396 (6)
C3 0.25819 (11) 0.2862 (5) 0.59771 (13) 0.0383 (5)
H3 0.2835 0.3641 0.5858 0.046*
C4 0.19732 (10) 0.3681 (5) 0.55975 (12) 0.0331 (5)
C5 0.16059 (9) 0.2490 (4) 0.57926 (11) 0.0298 (5)
C6 0.18307 (10) 0.0510 (5) 0.63429 (11) 0.0327 (5)
C7 0.17409 (12) 0.5789 (5) 0.49986 (13) 0.0431 (6)
H7A 0.1644 0.7526 0.5130 0.065*
H7B 0.1382 0.5055 0.4576 0.065*
H7C 0.2050 0.6122 0.4910 0.065*
C8 0.14313 (11) −0.0861 (6) 0.65436 (14) 0.0449 (6)
H8A 0.1633 −0.2502 0.6829 0.067*
H8B 0.1050 −0.1400 0.6119 0.067*
H8C 0.1359 0.0450 0.6810 0.067*
C9 0.34835 (12) −0.0022 (7) 0.69235 (15) 0.0559 (7)
H9A 0.3648 −0.0243 0.7420 0.084*
H9B 0.3714 0.1375 0.6866 0.084*
H9C 0.3506 −0.1786 0.6733 0.084*
C10 −0.00154 (10) 0.7701 (5) 0.40030 (12) 0.0354 (5)
C11 −0.00622 (14) 0.9110 (8) 0.33770 (15) 0.0690 (10)
H11A −0.0403 1.0412 0.3163 0.083*
H11B −0.0156 0.7677 0.3025 0.083*
Cl1 0.05862 (4) 1.0959 (2) 0.35657 (5) 0.0832 (4)
N1 0.09497 (8) 0.3181 (4) 0.53843 (9) 0.0328 (4)
H1A 0.0737 0.1818 0.5070 0.049*
H1B 0.0884 0.4804 0.5155 0.049*
H1C 0.0833 0.3337 0.5681 0.049*
O1 −0.04344 (8) 0.6016 (4) 0.38346 (10) 0.0499 (5)
O2 0.04153 (8) 0.8320 (3) 0.46255 (8) 0.0432 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0366 (13) 0.0421 (13) 0.0342 (12) 0.0037 (10) 0.0175 (11) 0.0028 (10)
C2 0.0326 (12) 0.0467 (14) 0.0370 (12) 0.0019 (10) 0.0181 (11) −0.0029 (10)
C3 0.0349 (12) 0.0410 (13) 0.0456 (13) −0.0045 (10) 0.0267 (11) −0.0033 (10)
C4 0.0356 (12) 0.0296 (11) 0.0353 (11) −0.0024 (9) 0.0207 (10) −0.0051 (9)
C5 0.0284 (11) 0.0288 (11) 0.0305 (11) −0.0029 (8) 0.0157 (9) −0.0051 (8)
C6 0.0342 (12) 0.0333 (12) 0.0302 (11) −0.0033 (9) 0.0180 (10) −0.0029 (9)
C7 0.0471 (14) 0.0406 (14) 0.0472 (14) −0.0001 (11) 0.0300 (13) 0.0063 (11)
C8 0.0419 (14) 0.0473 (15) 0.0459 (14) 0.0015 (11) 0.0251 (12) 0.0124 (11)
C9 0.0353 (14) 0.078 (2) 0.0488 (16) 0.0087 (13) 0.0205 (13) 0.0064 (14)
C10 0.0319 (12) 0.0367 (13) 0.0380 (12) 0.0007 (9) 0.0198 (11) 0.0001 (10)
C11 0.0509 (17) 0.103 (3) 0.0427 (16) −0.0298 (17) 0.0204 (14) 0.0072 (15)
Cl1 0.0700 (6) 0.1098 (8) 0.0800 (6) −0.0347 (5) 0.0484 (5) 0.0061 (5)
N1 0.0304 (10) 0.0319 (10) 0.0351 (10) −0.0026 (8) 0.0179 (8) −0.0005 (8)
O1 0.0449 (10) 0.0583 (12) 0.0523 (11) −0.0175 (9) 0.0308 (9) −0.0082 (9)
O2 0.0433 (10) 0.0368 (9) 0.0354 (9) −0.0011 (7) 0.0136 (8) 0.0001 (7)

Geometric parameters (Å, °)

C1—C2 1.388 (3) C8—H8A 0.9600
C1—C6 1.391 (3) C8—H8B 0.9600
C1—H1 0.9300 C8—H8C 0.9600
C2—C3 1.399 (3) C9—H9A 0.9600
C2—C9 1.511 (3) C9—H9B 0.9600
C3—C4 1.391 (3) C9—H9C 0.9600
C3—H3 0.9300 C10—O1 1.242 (3)
C4—C5 1.397 (3) C10—O2 1.254 (3)
C4—C7 1.512 (3) C10—C11 1.512 (4)
C5—C6 1.401 (3) C11—Cl1 1.756 (3)
C5—N1 1.477 (3) C11—H11A 0.9700
C6—C8 1.516 (3) C11—H11B 0.9700
C7—H7A 0.9600 N1—H1A 0.8900
C7—H7B 0.9600 N1—H1B 0.8900
C7—H7C 0.9600 N1—H1C 0.8900
C2—C1—C6 122.0 (2) H8A—C8—H8B 109.5
C2—C1—H1 119.0 C6—C8—H8C 109.5
C6—C1—H1 119.0 H8A—C8—H8C 109.5
C1—C2—C3 118.2 (2) H8B—C8—H8C 109.5
C1—C2—C9 120.5 (2) C2—C9—H9A 109.5
C3—C2—C9 121.2 (2) C2—C9—H9B 109.5
C4—C3—C2 122.1 (2) H9A—C9—H9B 109.5
C4—C3—H3 119.0 C2—C9—H9C 109.5
C2—C3—H3 119.0 H9A—C9—H9C 109.5
C3—C4—C5 117.6 (2) H9B—C9—H9C 109.5
C3—C4—C7 119.1 (2) O1—C10—O2 126.0 (2)
C5—C4—C7 123.3 (2) O1—C10—C11 114.2 (2)
C4—C5—C6 122.1 (2) O2—C10—C11 119.8 (2)
C4—C5—N1 119.81 (19) C10—C11—Cl1 116.1 (2)
C6—C5—N1 117.96 (18) C10—C11—H11A 108.3
C1—C6—C5 117.9 (2) Cl1—C11—H11A 108.3
C1—C6—C8 119.5 (2) C10—C11—H11B 108.3
C5—C6—C8 122.5 (2) Cl1—C11—H11B 108.3
C4—C7—H7A 109.5 H11A—C11—H11B 107.4
C4—C7—H7B 109.5 C5—N1—H1A 109.5
H7A—C7—H7B 109.5 C5—N1—H1B 109.5
C4—C7—H7C 109.5 H1A—N1—H1B 109.5
H7A—C7—H7C 109.5 C5—N1—H1C 109.5
H7B—C7—H7C 109.5 H1A—N1—H1C 109.5
C6—C8—H8A 109.5 H1B—N1—H1C 109.5
C6—C8—H8B 109.5

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1B···O2 0.89 2.02 2.860 (2) 156
N1—H1A···O2i 0.89 1.88 2.748 (2) 165
N1—H1C···O1ii 0.89 1.93 2.809 (2) 169

Symmetry codes: (i) x, y−1, z; (ii) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2308).

References

  1. Brandenburg, K. & Putz, H. (2005). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Fu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H. & Huang, S. D. (2007). J. Am. Chem. Soc. 129, 5346–5347. [DOI] [PubMed]
  3. Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Ye, H.-Y., Fu, D.-W., Zhang, Y., Zhang, W., Xiong, R.-G. & Huang, S. D. (2009). J. Am. Chem. Soc. 131, 42–43. [DOI] [PubMed]
  6. Ye, Q., Song, Y.-M., Wang, G.-X., Fu, D.-W. & Xiong, R.-G. (2006). J. Am. Chem. Soc. 128, 6554–6555. [DOI] [PubMed]
  7. Zhang, W., Xiong, R.-G. & Huang, S.-P. D. (2008). J. Am. Chem. Soc. 130, 10468–10469. [DOI] [PubMed]
  8. Zhao, H., Qu, Z.-R., Ye, H.-Y. & Xiong, R.-G. (2008). Chem. Soc. Rev. 37, 84–100. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811026936/jh2308sup1.cif

e-67-o1997-sup1.cif (14.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811026936/jh2308Isup2.hkl

e-67-o1997-Isup2.hkl (132.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811026936/jh2308Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES