Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jul 9;67(Pt 8):o2003. doi: 10.1107/S1600536811024500

6-Nitro-2,3-dihydro-1H-pyrrolo­[2,1-c][1,4]benzodiazepine-5,11(10H,11aH)-dione

Abdessamad Jebani a, Hafid Zouihri b, Ahmed El Hakmaoui a,*, Saïd Lazar c, Mohamed Akssira a
PMCID: PMC3213458  PMID: 22091037

Abstract

In the two mol­ecules of the asymmetric unit of the title compound, C12H11N3O4, the seven-membered diazepine ring adopts a boat conformation (with the two phenyl­ene C atoms representing the stern and the methine C atom the prow). The five-membered pyrrole ring, which has an envelope conformation, makes dihedral angles of 60.47 (10) and 54.69 (9)° with the benzene ring of the benzodiazepine unit in the two mol­ecules. In the crystal, inter­molecular N—H⋯O hydrogen bonds and π–π stacking inter­actions [centroid–centroid distance = 3.8023 (7)–3.8946 (7) Å] lead to the formation of a three-dimensional framework.

Related literature

For the biological activity of pyrrolo­[2,1-c][1,4]benzodiazepine derivatives, see: Dervan (1986); Leimgruber et al. (1975); Da Settimo et al. (2007); Herpin et al. (2000); Arima et al. (1983). graphic file with name e-67-o2003-scheme1.jpg

Experimental

Crystal data

  • C12H11N3O4

  • M r = 261.24

  • Monoclinic, Inline graphic

  • a = 10.7364 (2) Å

  • b = 6.8925 (1) Å

  • c = 16.3901 (3) Å

  • β = 101.870 (1)°

  • V = 1186.94 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 296 K

  • 0.23 × 0.20 × 0.15 mm

Data collection

  • Bruker APEXII CCD detector diffractometer

  • 14768 measured reflections

  • 2543 independent reflections

  • 2452 reflections with I > 2σ(I)

  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.030

  • wR(F 2) = 0.080

  • S = 1.04

  • 2543 reflections

  • 351 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.16 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811024500/vm2102sup1.cif

e-67-o2003-sup1.cif (30.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811024500/vm2102Isup2.hkl

e-67-o2003-Isup2.hkl (124.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811024500/vm2102Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N10—H10N⋯O11i 0.85 (3) 1.98 (3) 2.821 (2) 169 (3)
N20—H20N⋯O22ii 0.84 (3) 2.15 (3) 2.980 (2) 169 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

supplementary crystallographic information

Comment

Benzodiazepines form a well known and widely applied class of biologically active compounds (Da Settimo et al., 2007) and are representatives of the family of privileged structures (Herpin et al., 2000). In the area of molecular recognition considerable efforts have been devoted to the synthesis of pyrrolo[2,1 c][1,4]benzodiazepines (PBDs) that can recognize and bind to specific sequences of DNA. They are potential regulators of gene expression with possible application as therapeutic agents in the treatment of genetic disorders including cancer. Furthermore, they can be used as affinity-cleavage reagents in molecular biology (Dervan, 1986). The PBD ring system is also found in natural antitumor antibiotics from Streptomyces species such as Anthramycin (Leimgruber et al., 1975), Tomaymycine (Arima et al., 1983).

The compound, C24H22N6O8, crystallizes with two reasonably similar molecules in the asymmetric unit (Fig. 1, r.m.s. deviation of 0.1051 Å for 19 non-H atoms fitted). The nitro and benzene systems are inclined at dihedral angles of 30.0 (3) and 41.0 (3)° in the first and second molecule of the asymetric unit, respectively. The seven-membered diazepine ring adopts a boat conformation (with the two phenylene C atoms representing the stern and the methine C atom the prow). The five-membered pyrrolo ring, which has an envelope conformation, makes dihedral angles of 60.47 (10)° and 54.69 (9)° with the benzene ring of the benzodiazepine in the two independent molecules of the unit.

In the crystal structure, intermolecular N—H···O hydrogen bonds (Fig. 2, Table 1) and π–π stacking interactions (centroid-centroid distance = 3.8023 (7) Å to 3.8946 (7) Å) lead to the formation of a three-dimensional framework.

Experimental

5-Nitro-1H-benzo[d][1,3]oxazine-2,4-dione (0.5 g, 2.5 mmol) and L-proline (0.29 g, 2.5 mmol) were dissolved in DMF (10 ml) and were then heated under reflux for 3 h. After cooling, the solvent was removed under reduced pressure to yield an oily residue; the residue was then purified over silica gel column chromatography using a mixture of hexane and ethyl acetate (3:1) as eluent. Under these conditions the compound was obtained as colourless crystals.

Refinement

The H atoms bound to C were treated as riding with their parent atoms [C—H distances are 0.93Å for CH groups with Uiso(H) = 1.2 Ueq(C), and 0.97 Å for CH3 groups with Uiso(H) = 1.5 Ueq(C)]. The nitrogen-bound H atoms were located in a difference Fourier map, and were refined with distance restraints of N–H 0.88±0.01. 2133 Friedel pairs were merged.

Figures

Fig. 1.

Fig. 1.

Molecular view of the title compound showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

Partial packing view showing the chain formed by N—H···O hydrogen bonds. H atoms not involved in hydrogen bonds have been omitted for clarity.

Crystal data

C12H11N3O4 F(000) = 544
Mr = 261.24 Dx = 1.462 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2yb Cell parameters from 246 reflections
a = 10.7364 (2) Å θ = 2.4–26.3°
b = 6.8925 (1) Å µ = 0.11 mm1
c = 16.3901 (3) Å T = 296 K
β = 101.870 (1)° Prism, colourless
V = 1186.94 (4) Å3 0.23 × 0.20 × 0.15 mm
Z = 4

Data collection

Bruker APEXII CCD detector diffractometer 2452 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.021
graphite θmax = 26.0°, θmin = 2.5°
ω and φ scans h = −13→13
14768 measured reflections k = −8→8
2543 independent reflections l = −20→20

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080 H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0518P)2 + 0.1616P] where P = (Fo2 + 2Fc2)/3
2543 reflections (Δ/σ)max < 0.001
351 parameters Δρmax = 0.17 e Å3
1 restraint Δρmin = −0.16 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C100 0.4871 (2) 0.4617 (3) 1.03240 (11) 0.0410 (4)
C101 0.3608 (2) 0.4649 (3) 0.99613 (13) 0.0445 (5)
C102 0.32175 (19) 0.4505 (3) 0.91009 (14) 0.0442 (5)
C103 0.41314 (17) 0.4215 (3) 0.86410 (11) 0.0359 (4)
C104 0.54297 (16) 0.4047 (3) 0.89854 (10) 0.0311 (4)
C105 0.58012 (18) 0.4374 (3) 0.98486 (10) 0.0336 (4)
C106 0.8095 (2) 0.5177 (3) 1.00041 (13) 0.0483 (5)
C107 0.63255 (16) 0.3127 (3) 0.85085 (10) 0.0316 (4)
C109 0.84963 (18) 0.3029 (4) 0.82441 (13) 0.0479 (5)
C110 0.9600 (2) 0.4396 (6) 0.8535 (2) 0.0749 (9)
C111 0.9040 (3) 0.6286 (5) 0.8754 (2) 0.0752 (9)
C112 0.7860 (2) 0.5679 (4) 0.90711 (14) 0.0485 (5)
C200 0.44163 (18) 0.4931 (3) 0.38760 (12) 0.0399 (4)
C201 0.40473 (19) 0.4968 (3) 0.46329 (13) 0.0440 (5)
C202 0.4948 (2) 0.5030 (3) 0.53689 (12) 0.0430 (4)
C203 0.62060 (19) 0.5134 (3) 0.53182 (11) 0.0374 (4)
C204 0.66333 (16) 0.5194 (3) 0.45691 (10) 0.0318 (4)
C205 0.57090 (16) 0.4986 (3) 0.38404 (10) 0.0318 (4)
C206 0.70022 (18) 0.4042 (3) 0.28050 (11) 0.0378 (4)
C207 0.79608 (17) 0.5876 (3) 0.45641 (11) 0.0360 (4)
C209 0.98134 (19) 0.5664 (4) 0.39103 (15) 0.0522 (6)
C210 1.0011 (2) 0.4484 (5) 0.31649 (15) 0.0655 (8)
C211 0.9243 (2) 0.2650 (4) 0.32000 (15) 0.0559 (6)
C212 0.80720 (17) 0.3350 (3) 0.35062 (11) 0.0369 (4)
H100 0.5118 0.4760 1.0899 0.049*
H101 0.3004 0.4767 1.0292 0.053*
H102 0.2362 0.4603 0.8845 0.053*
H10A 0.8258 0.2995 0.7640 0.058*
H10B 0.8700 0.1724 0.8451 0.058*
H10N 0.539 (3) 0.528 (5) 0.2657 (18) 0.056 (8)*
H112 0.7192 0.6665 0.8932 0.058*
H11A 0.8815 0.7115 0.8267 0.090*
H11B 0.9636 0.6972 0.9182 0.090*
H11C 1.0174 0.3867 0.9019 0.090*
H11D 1.0070 0.4595 0.8096 0.090*
H200 0.3803 0.4870 0.3385 0.048*
H201 0.3187 0.4950 0.4649 0.053*
H202 0.4709 0.5002 0.5883 0.052*
H20A 1.0469 0.5388 0.4399 0.063*
H20B 0.9812 0.7043 0.3793 0.063*
H20N 0.716 (2) 0.416 (5) 1.0780 (17) 0.058 (7)*
H212 0.7765 0.2341 0.3837 0.044*
H21A 0.9722 0.1718 0.3584 0.067*
H21B 0.9005 0.2058 0.2653 0.067*
H21C 0.9703 0.5183 0.2649 0.079*
H21D 1.0905 0.4183 0.3208 0.079*
N10 0.60011 (15) 0.4905 (3) 0.30409 (9) 0.0369 (4)
N11 0.71691 (17) 0.5079 (3) 0.61116 (9) 0.0464 (4)
N12 0.85585 (14) 0.5013 (3) 0.40290 (9) 0.0371 (4)
N20 0.70780 (16) 0.4399 (3) 1.02707 (10) 0.0413 (4)
N21 0.36959 (16) 0.4213 (3) 0.77185 (11) 0.0479 (4)
N22 0.74763 (15) 0.3889 (3) 0.86106 (10) 0.0380 (4)
O11 0.60185 (13) 0.1634 (2) 0.81012 (8) 0.0435 (4)
O12 0.91105 (16) 0.5401 (4) 1.04775 (12) 0.0739 (6)
O13 0.26234 (16) 0.3669 (4) 0.74408 (12) 0.0761 (6)
O14 0.44340 (18) 0.4853 (4) 0.73230 (10) 0.0743 (6)
O21 0.84147 (15) 0.7225 (3) 0.50119 (10) 0.0571 (4)
O22 0.70331 (15) 0.3858 (3) 0.20681 (8) 0.0581 (5)
O23 0.6951 (2) 0.5986 (4) 0.66967 (9) 0.0723 (6)
O24 0.80876 (17) 0.4033 (4) 0.61259 (10) 0.0725 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C100 0.0594 (12) 0.0344 (10) 0.0313 (8) 0.0026 (9) 0.0144 (8) −0.0011 (8)
C101 0.0534 (12) 0.0395 (11) 0.0477 (11) 0.0024 (9) 0.0268 (9) −0.0014 (9)
C102 0.0350 (9) 0.0462 (12) 0.0522 (11) 0.0019 (9) 0.0107 (8) −0.0011 (10)
C103 0.0352 (9) 0.0384 (10) 0.0328 (8) 0.0023 (8) 0.0039 (7) 0.0010 (8)
C104 0.0335 (8) 0.0321 (9) 0.0275 (7) −0.0022 (7) 0.0057 (6) 0.0010 (7)
C105 0.0420 (9) 0.0288 (9) 0.0290 (8) 0.0006 (8) 0.0054 (7) −0.0002 (7)
C106 0.0483 (11) 0.0426 (11) 0.0478 (11) −0.0081 (10) −0.0043 (9) −0.0095 (10)
C107 0.0311 (8) 0.0397 (10) 0.0225 (7) −0.0023 (8) 0.0021 (6) 0.0011 (7)
C109 0.0339 (10) 0.0676 (15) 0.0441 (10) 0.0059 (10) 0.0124 (8) 0.0114 (11)
C110 0.0398 (12) 0.097 (2) 0.0907 (19) −0.0091 (14) 0.0187 (12) 0.021 (2)
C111 0.0662 (17) 0.079 (2) 0.0801 (18) −0.0344 (16) 0.0148 (14) 0.0114 (17)
C112 0.0483 (11) 0.0458 (12) 0.0499 (11) −0.0153 (10) 0.0064 (9) 0.0005 (10)
C200 0.0364 (9) 0.0400 (10) 0.0417 (9) −0.0023 (9) 0.0046 (7) 0.0022 (9)
C201 0.0381 (10) 0.0452 (11) 0.0519 (11) −0.0033 (9) 0.0163 (8) 0.0039 (10)
C202 0.0537 (11) 0.0398 (10) 0.0407 (9) 0.0029 (10) 0.0217 (8) 0.0050 (9)
C203 0.0479 (10) 0.0353 (9) 0.0289 (8) 0.0061 (9) 0.0079 (7) 0.0014 (8)
C204 0.0358 (9) 0.0313 (9) 0.0282 (8) 0.0027 (7) 0.0059 (7) 0.0000 (7)
C205 0.0359 (9) 0.0294 (8) 0.0299 (8) 0.0005 (8) 0.0065 (7) 0.0018 (7)
C206 0.0412 (9) 0.0434 (10) 0.0273 (8) −0.0008 (9) 0.0038 (7) −0.0013 (8)
C207 0.0346 (9) 0.0420 (10) 0.0292 (8) 0.0010 (8) 0.0015 (7) −0.0022 (8)
C209 0.0338 (10) 0.0653 (15) 0.0589 (12) −0.0050 (10) 0.0124 (9) −0.0021 (12)
C210 0.0449 (11) 0.100 (2) 0.0558 (13) 0.0031 (14) 0.0205 (10) −0.0026 (15)
C211 0.0461 (12) 0.0721 (17) 0.0486 (11) 0.0161 (12) 0.0078 (9) −0.0136 (12)
C212 0.0393 (10) 0.0408 (10) 0.0298 (8) 0.0036 (8) 0.0047 (7) −0.0026 (8)
N10 0.0374 (8) 0.0469 (9) 0.0236 (7) 0.0050 (8) −0.0001 (6) 0.0032 (7)
N11 0.0565 (10) 0.0552 (11) 0.0274 (7) 0.0124 (10) 0.0083 (7) 0.0032 (8)
N12 0.0316 (7) 0.0454 (9) 0.0339 (7) −0.0014 (7) 0.0054 (6) −0.0026 (8)
N20 0.0489 (9) 0.0438 (10) 0.0264 (7) −0.0011 (8) −0.0033 (6) −0.0014 (7)
N21 0.0385 (9) 0.0599 (11) 0.0410 (8) 0.0143 (9) −0.0017 (7) −0.0011 (9)
N22 0.0335 (7) 0.0454 (9) 0.0350 (7) −0.0040 (7) 0.0070 (6) −0.0002 (7)
O11 0.0392 (7) 0.0551 (9) 0.0365 (7) −0.0099 (7) 0.0085 (5) −0.0170 (7)
O12 0.0528 (9) 0.0925 (16) 0.0643 (10) −0.0183 (10) −0.0158 (8) −0.0133 (11)
O13 0.0474 (9) 0.1032 (18) 0.0660 (11) 0.0102 (11) −0.0155 (8) −0.0227 (12)
O14 0.0711 (11) 0.1173 (18) 0.0343 (7) 0.0125 (13) 0.0102 (7) 0.0148 (11)
O21 0.0456 (8) 0.0651 (11) 0.0592 (9) −0.0130 (8) 0.0075 (7) −0.0283 (9)
O22 0.0600 (9) 0.0874 (13) 0.0262 (6) 0.0125 (10) 0.0070 (6) −0.0042 (8)
O23 0.0948 (13) 0.0859 (14) 0.0326 (7) 0.0271 (12) 0.0053 (8) −0.0093 (9)
O24 0.0681 (10) 0.1011 (16) 0.0439 (8) 0.0377 (12) 0.0012 (7) 0.0013 (10)

Geometric parameters (Å, °)

C100—H100 0.9300 C203—N11 1.486 (2)
C100—C101 1.365 (3) C203—C202 1.372 (3)
C101—H101 0.9300 C204—C207 1.502 (3)
C101—C102 1.390 (3) C204—C203 1.397 (2)
C102—H102 0.9300 C204—C205 1.394 (2)
C103—N21 1.488 (2) C205—N10 1.410 (2)
C103—C102 1.369 (3) C205—C200 1.402 (3)
C104—C107 1.499 (2) C206—N10 1.352 (3)
C104—C105 1.407 (2) C206—O22 1.222 (2)
C104—C103 1.397 (2) C207—O21 1.222 (3)
C105—N20 1.403 (2) C209—H20B 0.9700
C105—C100 1.397 (3) C209—H20A 0.9700
C106—N20 1.366 (3) C209—C210 1.519 (4)
C106—O12 1.211 (3) C210—H21D 0.9700
C107—N22 1.321 (2) C210—H21C 0.9700
C107—O11 1.234 (2) C211—H21B 0.9700
C109—H10B 0.9700 C211—H21A 0.9700
C109—H10A 0.9700 C211—C210 1.516 (5)
C109—C110 1.512 (4) C212—H212 0.9800
C110—H11D 0.9700 C212—C211 1.525 (3)
C110—H11C 0.9700 C212—C206 1.525 (3)
C111—H11B 0.9700 N10—H10N 0.85 (3)
C111—H11A 0.9700 N11—O24 1.218 (3)
C111—C110 1.508 (5) N11—O23 1.207 (2)
C112—H112 0.9800 N12—C209 1.470 (2)
C112—C106 1.537 (3) N12—C212 1.462 (3)
C112—C111 1.524 (3) N12—C207 1.329 (3)
C200—H200 0.9300 N20—H20N 0.84 (3)
C200—C201 1.378 (3) N21—O13 1.208 (3)
C201—H201 0.9300 N21—O14 1.206 (3)
C202—H202 0.9300 N22—C109 1.477 (3)
C202—C201 1.383 (3) N22—C112 1.461 (3)
C105—C100—H100 119.4 C204—C203—N11 118.34 (17)
C101—C100—H100 119.4 C202—C203—N11 117.53 (17)
C101—C100—C105 121.28 (18) C202—C203—C204 124.06 (18)
C102—C101—H101 119.8 C203—C204—C207 119.82 (16)
C100—C101—H101 119.8 C205—C204—C207 122.44 (15)
C100—C101—C102 120.41 (17) C205—C204—C203 116.44 (16)
C101—C102—H102 121.0 C200—C205—N10 116.68 (16)
C103—C102—H102 121.0 C204—C205—N10 123.03 (15)
C103—C102—C101 117.92 (18) C204—C205—C200 120.24 (16)
C104—C103—N21 119.29 (16) N10—C206—C212 116.22 (15)
C102—C103—N21 116.65 (17) O22—C206—C212 122.90 (18)
C102—C103—C104 123.93 (17) O22—C206—N10 120.88 (18)
C105—C104—C107 120.83 (16) N12—C207—C204 116.80 (17)
C103—C104—C107 121.21 (15) O21—C207—C204 119.76 (17)
C103—C104—C105 116.48 (16) O21—C207—N12 123.36 (18)
N20—C105—C104 122.95 (17) H20A—C209—H20B 109.1
C100—C105—C104 119.53 (18) C210—C209—H20B 111.1
C100—C105—N20 117.48 (16) N12—C209—H20B 111.1
N20—C106—C112 115.31 (17) C210—C209—H20A 111.1
O12—C106—C112 123.4 (2) N12—C209—H20A 111.1
O12—C106—N20 121.2 (2) N12—C209—C210 103.11 (19)
N22—C107—C104 116.70 (17) H21C—C210—H21D 108.9
O11—C107—C104 120.41 (16) C209—C210—H21D 110.9
O11—C107—N22 122.60 (18) C211—C210—H21D 110.9
H10A—C109—H10B 109.1 C209—C210—H21C 110.9
C110—C109—H10B 111.2 C211—C210—H21C 110.9
N22—C109—H10B 111.2 C211—C210—C209 104.39 (19)
C110—C109—H10A 111.2 H21A—C211—H21B 109.0
N22—C109—H10A 111.2 C212—C211—H21B 111.0
N22—C109—C110 102.7 (2) C210—C211—H21B 111.0
H11C—C110—H11D 108.6 C212—C211—H21A 111.0
C109—C110—H11D 110.4 C210—C211—H21A 111.0
C111—C110—H11D 110.4 C210—C211—C212 103.9 (2)
C109—C110—H11C 110.4 C211—C212—H212 110.6
C111—C110—H11C 110.4 C206—C212—H212 110.6
C111—C110—C109 106.8 (2) N12—C212—H212 110.6
H11A—C111—H11B 109.0 C206—C212—C211 113.29 (16)
C112—C111—H11B 110.9 N12—C212—C211 102.79 (17)
C110—C111—H11B 110.9 N12—C212—C206 108.64 (17)
C112—C111—H11A 110.9 C205—N10—H10N 113.2 (18)
C110—C111—H11A 110.9 C206—N10—H10N 117.2 (18)
C110—C111—C112 104.1 (2) C206—N10—C205 128.68 (16)
C106—C112—H112 110.5 O24—N11—C203 116.55 (17)
C111—C112—H112 110.5 O23—N11—C203 117.90 (18)
N22—C112—H112 110.5 O23—N11—O24 125.44 (18)
C111—C112—C106 115.0 (2) C212—N12—C209 112.85 (16)
N22—C112—C106 107.16 (18) C207—N12—C209 122.05 (19)
N22—C112—C111 102.8 (2) C207—N12—C212 125.10 (16)
C205—C200—H200 119.8 C105—N20—H20N 112.6 (18)
C201—C200—H200 119.8 C106—N20—H20N 117.8 (19)
C201—C200—C205 120.49 (18) C106—N20—C105 127.69 (17)
C202—C201—H201 119.8 O13—N21—C103 117.34 (19)
C200—C201—H201 119.8 O14—N21—C103 116.24 (18)
C200—C201—C202 120.46 (18) O14—N21—O13 126.3 (2)
C201—C202—H202 121.0 C112—N22—C109 113.29 (17)
C203—C202—H202 121.0 C107—N22—C109 122.77 (19)
C203—C202—C201 118.00 (18) C107—N22—C112 123.91 (18)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N10—H10N···O11i 0.85 (3) 1.98 (3) 2.821 (2) 169 (3)
N20—H20N···O22ii 0.84 (3) 2.15 (3) 2.980 (2) 169 (2)

Symmetry codes: (i) −x+1, y+1/2, −z+1; (ii) x, y, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: VM2102).

References

  1. Arima, K., Kohsaka, M., Tamura, J., Imanaka, H. & Sakai, H. (1983). J. Antibiot. 25, 437–444. [DOI] [PubMed]
  2. Bruker (2005). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Da Settimo, F., Taliani, S., Trincavelli, M. L., Montali, M. & Martini, C. (2007). Curr. Med. Chem. 14, 2680–???. [DOI] [PubMed]
  4. Dervan, P. B. (1986). Science 232, 464–471. [DOI] [PubMed]
  5. Herpin, T. F., Van Kirk, K. G., Salvino, J. M., Yu, S. T. & Labaudiniere, R. F. (2000). J. Comb. Chem 2, 513–521. [DOI] [PubMed]
  6. Leimgruber, W., Stefanovic, V., Schenker, F., Karr, A. & Berger, J. (1975). J. Am. Chem. Soc. 87, 5791–5793. [DOI] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  9. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811024500/vm2102sup1.cif

e-67-o2003-sup1.cif (30.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811024500/vm2102Isup2.hkl

e-67-o2003-Isup2.hkl (124.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811024500/vm2102Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES