Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jul 13;67(Pt 8):o2007. doi: 10.1107/S1600536811026961

2-[2-(4-Meth­oxy­phen­yl)-2-oxoeth­yl]malononitrile

Mi Lian a,*, Tianli Chen b, Yanping Zhu a
PMCID: PMC3213462  PMID: 22091041

Abstract

The title compound, C12H10N2O2, was obtained unintentionally during the synthesis of 2-amino-5-(4-meth­oxy­phen­yl)furan-3-carbonitrile. In the crystal, weak inter­mol­ecular C—H⋯N and C—H⋯π inter­actions link the mol­ecules into columns propagating in [010].

Related literature

For the crystal structures of related compounds with a malononitrile fragment, see: Luo & Zhou (2006); Ohashi et al. (2008); Oliva et al. (2010).graphic file with name e-67-o2007-scheme1.jpg

Experimental

Crystal data

  • C12H10N2O2

  • M r = 214.22

  • Monoclinic, Inline graphic

  • a = 11.9010 (13) Å

  • b = 6.4898 (7) Å

  • c = 14.4248 (16) Å

  • β = 100.141 (2)°

  • V = 1096.7 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.16 × 0.12 × 0.10 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • 11044 measured reflections

  • 2148 independent reflections

  • 1693 reflections with I > 2σ(I)

  • R int = 0.123

Refinement

  • R[F 2 > 2σ(F 2)] = 0.052

  • wR(F 2) = 0.137

  • S = 1.07

  • 2148 reflections

  • 146 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811026961/cv5094sup1.cif

e-67-o2007-sup1.cif (15.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811026961/cv5094Isup2.hkl

e-67-o2007-Isup2.hkl (105.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811026961/cv5094Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9B⋯N1i 0.97 2.55 3.380 (2) 143
C10—H10⋯Cgii 0.98 2.56 3.411 (1) 145

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors are grateful to the Central China Normal University for financial support and thank Dr Xiang-Gao Meng for the X-ray data collection.

supplementary crystallographic information

Comment

The title compound (I) has been unintentionally obtained in the process of synthesis of 2-amino-5-(4-methoxyphenyl)furan-3-carbonitrile.

In (I) (Fig. 1), all bond lengths and angles are normal and comparable with those observed in related compounds (Luo & Zhou, 2006; Ohashi et al., 2008; Oliva et al., 2010). In the crystal structure, weak intermolecular C—H···N and C—H···π interactions (Table 1) link the molecules into columns propagated in [010].

Experimental

To a solution of K2CO3 (2.0 equiv) in MeOH,3-iodo-1-(4-methoxyphenyl)propan-1-one (1.0 equiv) and malononitrile (2.0 equiv) were separately added. The resulting mixture was then heated at reflux for several hours (TLC monitoring). After that, the solvent was removed under reduce pressure, and added 50 mL water to the residue, then extracted with EtOAc 3 times. The organic phase was washed with saturated saline solution. Then the organic phase was dried by anhydrous Na2SO4, and removed the EtOAc under reduce pressure. The final residue was purified by column chromatography on silica gel to afford the expected target compound as a white solid.

Refinement

All H atoms were positioned in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances in the range 0.93–0.97 Å and Uiso(H) = 1.2-1.5Ueq(C).

Figures

Fig. 1.

Fig. 1.

A view of (I), showing the atom-labelling scheme, with displacement ellipsoids drawn at the 50% probability level.

Crystal data

C12H10N2O2 F(000) = 448
Mr = 214.22 Dx = 1.297 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 11.9010 (13) Å Cell parameters from 2694 reflections
b = 6.4898 (7) Å θ = 2.9–26.8°
c = 14.4248 (16) Å µ = 0.09 mm1
β = 100.141 (2)° T = 298 K
V = 1096.7 (2) Å3 Block, colourless
Z = 4 0.16 × 0.12 × 0.10 mm

Data collection

Bruker SMART CCD area-detector diffractometer 1693 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.123
graphite θmax = 26.0°, θmin = 2.4°
phi and ω scans h = −14→14
11044 measured reflections k = −7→7
2148 independent reflections l = −17→17

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137 H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0648P)2 + 0.034P] where P = (Fo2 + 2Fc2)/3
2148 reflections (Δ/σ)max < 0.001
146 parameters Δρmax = 0.18 e Å3
0 restraints Δρmin = −0.21 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 −0.03121 (14) 0.6967 (3) 0.89840 (11) 0.0469 (4)
C2 −0.05989 (14) 0.5030 (3) 0.86164 (11) 0.0480 (4)
H2 −0.1361 0.4645 0.8453 0.058*
C3 0.02602 (14) 0.3670 (2) 0.84951 (11) 0.0448 (4)
H3 0.0068 0.2371 0.8245 0.054*
C4 0.14054 (13) 0.4210 (2) 0.87402 (10) 0.0396 (4)
C5 0.16687 (14) 0.6144 (2) 0.91392 (11) 0.0462 (4)
H5 0.2429 0.6514 0.9330 0.055*
C6 0.08248 (15) 0.7514 (3) 0.92565 (12) 0.0509 (5)
H6 0.1015 0.8805 0.9518 0.061*
C7 −0.22564 (17) 0.8083 (3) 0.87859 (16) 0.0742 (6)
H7A −0.2385 0.7757 0.8126 0.111*
H7B −0.2686 0.9290 0.8887 0.111*
H7C −0.2497 0.6947 0.9130 0.111*
C8 0.22937 (13) 0.2781 (2) 0.85246 (11) 0.0406 (4)
C9 0.35302 (13) 0.3417 (2) 0.88084 (11) 0.0427 (4)
H9A 0.3737 0.3396 0.9490 0.051*
H9B 0.3625 0.4815 0.8597 0.051*
C10 0.43241 (13) 0.1983 (2) 0.83864 (11) 0.0434 (4)
H10 0.4024 0.1853 0.7711 0.052*
C11 0.54808 (15) 0.2847 (3) 0.84914 (13) 0.0552 (5)
C12 0.44048 (14) −0.0098 (3) 0.87938 (12) 0.0489 (4)
N1 0.45034 (15) −0.1695 (2) 0.91202 (13) 0.0714 (5)
N2 0.63714 (16) 0.3512 (3) 0.85611 (16) 0.0868 (6)
O1 −0.10731 (11) 0.84605 (18) 0.91043 (10) 0.0646 (4)
O2 0.20628 (10) 0.11578 (17) 0.81148 (9) 0.0555 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0446 (10) 0.0516 (10) 0.0465 (9) 0.0042 (8) 0.0132 (7) 0.0010 (8)
C2 0.0366 (9) 0.0558 (10) 0.0517 (10) −0.0036 (7) 0.0078 (7) 0.0008 (8)
C3 0.0408 (9) 0.0429 (9) 0.0509 (10) −0.0045 (7) 0.0085 (7) 0.0012 (7)
C4 0.0362 (9) 0.0451 (9) 0.0375 (8) −0.0014 (7) 0.0062 (6) 0.0034 (7)
C5 0.0373 (9) 0.0540 (10) 0.0466 (9) −0.0056 (7) 0.0052 (7) −0.0037 (7)
C6 0.0493 (11) 0.0499 (10) 0.0545 (10) −0.0035 (8) 0.0118 (8) −0.0097 (8)
C7 0.0472 (12) 0.0813 (14) 0.0951 (16) 0.0128 (10) 0.0147 (11) −0.0016 (12)
C8 0.0404 (9) 0.0410 (9) 0.0393 (8) −0.0038 (7) 0.0046 (7) 0.0044 (7)
C9 0.0385 (9) 0.0424 (9) 0.0467 (9) −0.0003 (7) 0.0058 (7) 0.0007 (7)
C10 0.0386 (9) 0.0489 (9) 0.0425 (9) −0.0050 (7) 0.0067 (7) −0.0049 (7)
C11 0.0448 (11) 0.0574 (11) 0.0650 (11) −0.0034 (8) 0.0141 (9) −0.0071 (9)
C12 0.0408 (10) 0.0476 (10) 0.0561 (10) −0.0033 (7) 0.0025 (7) −0.0117 (8)
N1 0.0717 (12) 0.0465 (9) 0.0902 (13) −0.0040 (8) −0.0018 (9) −0.0014 (9)
N2 0.0493 (11) 0.0921 (14) 0.1221 (17) −0.0202 (9) 0.0236 (10) −0.0177 (11)
O1 0.0473 (8) 0.0633 (8) 0.0844 (9) 0.0092 (6) 0.0145 (6) −0.0115 (7)
O2 0.0450 (7) 0.0497 (7) 0.0704 (8) −0.0058 (5) 0.0065 (6) −0.0134 (6)

Geometric parameters (Å, °)

C1—O1 1.3585 (19) C7—H7A 0.9600
C1—C2 1.383 (2) C7—H7B 0.9600
C1—C6 1.387 (2) C7—H7C 0.9600
C2—C3 1.385 (2) C8—O2 1.2153 (18)
C2—H2 0.9300 C8—C9 1.514 (2)
C3—C4 1.391 (2) C9—C10 1.527 (2)
C3—H3 0.9300 C9—H9A 0.9700
C4—C5 1.393 (2) C9—H9B 0.9700
C4—C8 1.480 (2) C10—C12 1.469 (2)
C5—C6 1.374 (2) C10—C11 1.469 (2)
C5—H5 0.9300 C10—H10 0.9800
C6—H6 0.9300 C11—N2 1.132 (2)
C7—O1 1.423 (2) C12—N1 1.136 (2)
O1—C1—C2 124.91 (15) O1—C7—H7C 109.5
O1—C1—C6 114.83 (15) H7A—C7—H7C 109.5
C2—C1—C6 120.26 (15) H7B—C7—H7C 109.5
C1—C2—C3 119.30 (15) O2—C8—C4 122.46 (14)
C1—C2—H2 120.3 O2—C8—C9 119.58 (14)
C3—C2—H2 120.3 C4—C8—C9 117.94 (13)
C2—C3—C4 121.31 (15) C8—C9—C10 111.48 (13)
C2—C3—H3 119.3 C8—C9—H9A 109.3
C4—C3—H3 119.3 C10—C9—H9A 109.3
C3—C4—C5 118.08 (15) C8—C9—H9B 109.3
C3—C4—C8 119.53 (14) C10—C9—H9B 109.3
C5—C4—C8 122.30 (14) H9A—C9—H9B 108.0
C6—C5—C4 121.19 (15) C12—C10—C11 108.40 (14)
C6—C5—H5 119.4 C12—C10—C9 113.72 (13)
C4—C5—H5 119.4 C11—C10—C9 111.12 (13)
C5—C6—C1 119.79 (16) C12—C10—H10 107.8
C5—C6—H6 120.1 C11—C10—H10 107.8
C1—C6—H6 120.1 C9—C10—H10 107.8
O1—C7—H7A 109.5 N2—C11—C10 179.2 (2)
O1—C7—H7B 109.5 N1—C12—C10 177.78 (18)
H7A—C7—H7B 109.5 C1—O1—C7 118.68 (14)
O1—C1—C2—C3 177.46 (15) C3—C4—C8—C9 −179.59 (14)
C6—C1—C2—C3 −2.1 (2) C5—C4—C8—C9 3.9 (2)
C1—C2—C3—C4 0.4 (2) O2—C8—C9—C10 8.6 (2)
C2—C3—C4—C5 1.9 (2) C4—C8—C9—C10 −169.81 (12)
C2—C3—C4—C8 −174.84 (14) C8—C9—C10—C12 −69.54 (17)
C3—C4—C5—C6 −2.4 (2) C8—C9—C10—C11 167.82 (13)
C8—C4—C5—C6 174.22 (14) C12—C10—C11—N2 111 (14)
C4—C5—C6—C1 0.7 (3) C9—C10—C11—N2 −124 (14)
O1—C1—C6—C5 −178.01 (15) C11—C10—C12—N1 9(5)
C2—C1—C6—C5 1.6 (3) C9—C10—C12—N1 −115 (5)
C3—C4—C8—O2 2.0 (2) C2—C1—O1—C7 −3.7 (2)
C5—C4—C8—O2 −174.53 (15) C6—C1—O1—C7 175.89 (16)

Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C1–C6 ring.
D—H···A D—H H···A D···A D—H···A
C9—H9B···N1i 0.97 2.55 3.380 (2) 143
C10—H10···Cgii 0.98 2.56 3.411 (1) 145

Symmetry codes: (i) x, y+1, z; (ii) −x+1/2, y−1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5094).

References

  1. Bruker (1997). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Luo, Y.-P. & Zhou, H.-B. (2006). Acta Cryst. E62, o5369–o5370.
  3. Ohashi, M., Nakatani, K., Maeda, H. & Mizuno, K. (2008). Org. Lett. 10, 2741–2743. [DOI] [PubMed]
  4. Oliva, C. G., Silva, A. M. S., Resende, D. I. S. P., Paz, F. A. A. & Cavaleiro, J. A. S. (2010). Eur. J. Org. Chem. pp. 3449–3458.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811026961/cv5094sup1.cif

e-67-o2007-sup1.cif (15.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811026961/cv5094Isup2.hkl

e-67-o2007-Isup2.hkl (105.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811026961/cv5094Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES