Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jul 13;67(Pt 8):o2029–o2030. doi: 10.1107/S1600536811027280

4-(4-{[(2-Phenyl­quinazolin-4-yl)­oxy]methyl}-1H-1,2,3-triazol-1-yl)butan-1-ol hemihydrate

Abdelaaziz Ouahrouch a, Hassan B Lazrek b, Moha Taourirte a, Mohamed El Azhari c, Mohamed Saadi d, Lahcen El Ammari d,*
PMCID: PMC3213479  PMID: 22091058

Abstract

The title compound, C21H21N5O2·0.5H2O, has two fused six-membered rings linked to a benzene ring and to a triazole ring, which is connected to a butanol group. The quinazoline ring forms a dihedral angle of 7.88 (8)° with the benzene ring, while the triazole ring is approximately perpendicular to the benzene ring and to the quinazoline system, making dihedral angles of 84.38 (10) and 76.55 (8)°, respectively. The stereochemical arrangement of the butanol chain, with a C—C—C—C torsion angle of 178.34 (19)°, corresponds to an anti­periplanar conformation. However the position of the –OH group is split into two very close [O—O = 0.810(3) Å] positions of equal occupancy. The crystal structure features O—H⋯N and O—H⋯O hydrogen bonds, building an infinite three-dimensional network. The water molecule is located on a half-filled general position.

Related literature

For details of the synthesis, see: Krim et al. (2009); Mani Chandrika et al. (2010). For the biological activity of quinazolinone derivatives, see: Alvarez et al. (1994); Chan et al. (1997); De Clercq (1997, 2002); Dempcy & Skibo (1991); Gackenheimer et al. (1995). graphic file with name e-67-o2029-scheme1.jpg

Experimental

Crystal data

  • C21H21N5O2·0.5H2O

  • M r = 384.44

  • Monoclinic, Inline graphic

  • a = 11.359 (4) Å

  • b = 7.694 (3) Å

  • c = 22.817 (7) Å

  • β = 101.111 (16)°

  • V = 1956.9 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.55 × 0.31 × 0.28 mm

Data collection

  • Bruker X8 APEX Diffractometer

  • 18195 measured reflections

  • 3709 independent reflections

  • 2879 reflections with I > 2σ(I)

  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.127

  • S = 1.03

  • 3709 reflections

  • 271 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia,1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811027280/fj2442sup1.cif

e-67-o2029-sup1.cif (30.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811027280/fj2442Isup2.hkl

e-67-o2029-Isup2.hkl (181.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811027280/fj2442Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2B—H2B⋯N1i 0.86 2.08 2.935 (3) 170
O2A—H2A⋯O3Wii 0.86 1.90 2.757 (4) 176
O3W—H3WA⋯N3iii 0.86 2.12 2.967 (3) 167
O3W—H3WB⋯N3 0.86 2.00 2.835 (3) 163

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

supplementary crystallographic information

Comment

The quinazolinone derivatives are an important class of compounds, as they are present in a large family of products with broad biological activities. For example: anticancers, diuretics, anti-inflammatories, anticonvulsants and antihypertensives (Chan et al. (1997); Gackenheimer et al. (1995); Dempcy et al. (1991)). Also, triazoles associated with various heterocycles are one of the research areas of interesting pharmacological activities, some analogues are used for the treatment of hepatitisC and HIV-1 (De Clercq, (1997); De Clercq, (2002); Alvarez et al. (1994)).

The molecule of the title compound is built up from two fused six-membered rings to a phenyl ring and to a five-membered ring which is connected to butanol group as shown in Fig.1. The fused rings are almost planar, with a maximum deviation of -0.0175 (15) Å and -0.0058 (15) Å for C8 and C1 respectively. The dihedral angle between the quinazoline mean plane and the phenyl ring amount to 7.88 (8)°. The triazol ring is approximately perpendicular to the phenyl ring and to the quinazoline system, with a dihedral angles of 84.38 (10)° and 76.55 (8)° respectively. The stereochemical arrangement of the butanol chain with C18—C19—C20—C21 torsion angles in the range of 178.34 (19) ° corresponds to an anti-periplanar conformation.

An intermolecular O—H···N and O—H···O hydrogen bonds, building an infinite three-dimensional network and ensure the cohesion of the crystal structure as schown in Fig.2 and Table 1.

Experimental

The title compound, 4-(4-((2-phenylquinazolin-4-yloxy)methyl)-1,2,3-triazol -1-yl)butan-1-ol was achieved by cycloaddition of propargylated quinazolinone and azide under microwave conditions with CuI as catalyst and without solvent. The product was obtained with quantitative yield (93%) and short reaction time (Mani Chandrika et al. (2010); Krim et al. (2009)). The crude product was purified passing through a column packed with silica gel. Crystal suitable for X-ray analysis was obtained by slow evaporation of a methanol / methylene chloride (1:4 v/v) solution. The melting point is about 371 - 372 K.

Refinement

The structure is solved by direct method technique and refined by full-matrix least-squares using SHELXS97 and SHELXL97 program packages. H atoms were located in a difference map and treated as riding with C—H = 0.97 Å and 0.93 Å for –CH2– and aromatic CH respectively. All H atoms with Uiso(H) = 1.2 Ueq (aromatic, methylene). The O-bound H atom is initially located in a difference map and refined with O—H distance restraints of 0.86 (1). In a the last cycle ther is refined in the riding model approximation with Uiso(H) set to 1.2Ueq(O). In the butanol chain, the OH is statistically distributed on two very close positions with the same occupancy rate and a small atomic displacement parameters and better R-factor. The refinement of the occupancy rate of the water molecule led to 0.5 H20 in the unit cell.

Figures

Fig. 1.

Fig. 1.

: Plot of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles.

Fig. 2.

Fig. 2.

: Tridimensional view of the title compound, showing molecules linked through O—H···N and O–H···O hydrogen bonds (dashed lines).

Crystal data

C21H21N5O2·0.5H2O F(000) = 812
Mr = 384.44 Dx = 1.305 Mg m3
Monoclinic, P21/n Melting point: 371(1) K
Hall symbol: -P 2yn Mo Kα radiation, λ = 0.71073 Å
a = 11.359 (4) Å Cell parameters from 3709 reflections
b = 7.694 (3) Å θ = 1.8–25.7°
c = 22.817 (7) Å µ = 0.09 mm1
β = 101.111 (16)° T = 296 K
V = 1956.9 (12) Å3 Block, colourless
Z = 4 0.55 × 0.31 × 0.28 mm

Data collection

Bruker X8 APEX Diffractometer 2879 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.028
graphite θmax = 25.7°, θmin = 1.8°
φ and ω scans h = −13→13
18195 measured reflections k = −9→9
3709 independent reflections l = −27→27

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0668P)2 + 0.4064P] where P = (Fo2 + 2Fc2)/3
3709 reflections (Δ/σ)max < 0.001
271 parameters Δρmax = 0.47 e Å3
0 restraints Δρmin = −0.20 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 0.58474 (13) 0.7779 (2) −0.02725 (7) 0.0442 (4)
C2 0.69772 (15) 0.8512 (2) −0.00495 (8) 0.0548 (4)
H2 0.7529 0.8648 −0.0299 0.066*
C3 0.72682 (16) 0.9027 (2) 0.05374 (8) 0.0588 (5)
H3 0.8021 0.9503 0.0682 0.071*
C4 0.64558 (16) 0.8851 (2) 0.09214 (8) 0.0587 (5)
H4 0.6669 0.9205 0.1317 0.070*
C5 0.53502 (15) 0.8160 (2) 0.07146 (7) 0.0515 (4)
H5 0.4806 0.8044 0.0969 0.062*
C6 0.50330 (13) 0.7621 (2) 0.01149 (6) 0.0416 (3)
C7 0.39026 (13) 0.69043 (19) −0.01484 (6) 0.0410 (3)
C8 0.45066 (13) 0.6516 (2) −0.10360 (6) 0.0424 (4)
C9 0.41915 (14) 0.5786 (2) −0.16527 (6) 0.0446 (4)
C10 0.49525 (17) 0.5955 (3) −0.20563 (8) 0.0595 (5)
H10 0.5673 0.6552 −0.1945 0.071*
C11 0.46526 (19) 0.5245 (3) −0.26255 (8) 0.0692 (5)
H11 0.5167 0.5390 −0.2893 0.083*
C12 0.36108 (19) 0.4337 (3) −0.27949 (8) 0.0634 (5)
H12 0.3415 0.3852 −0.3175 0.076*
C13 0.28553 (18) 0.4149 (3) −0.23962 (8) 0.0630 (5)
H13 0.2146 0.3525 −0.2507 0.076*
C14 0.31353 (16) 0.4879 (2) −0.18315 (7) 0.0543 (4)
H14 0.2606 0.4756 −0.1570 0.065*
C15 0.19503 (14) 0.6055 (2) −0.00380 (7) 0.0499 (4)
H15A 0.2048 0.4910 −0.0200 0.060*
H15B 0.1522 0.6786 −0.0355 0.060*
C16 0.12872 (13) 0.5943 (2) 0.04624 (6) 0.0432 (4)
C17 0.14267 (15) 0.4820 (2) 0.09333 (7) 0.0537 (4)
H17 0.1969 0.3905 0.1013 0.064*
C18 0.04037 (17) 0.4596 (3) 0.18224 (8) 0.0743 (6)
H18A 0.0219 0.3369 0.1770 0.089*
H18B −0.0289 0.5169 0.1926 0.089*
C19 0.14564 (16) 0.4819 (3) 0.23258 (7) 0.0575 (4)
H19A 0.1675 0.6038 0.2357 0.069*
H19B 0.2133 0.4180 0.2232 0.069*
C20 0.12258 (18) 0.4201 (3) 0.29266 (8) 0.0660 (5)
H20A 0.0564 0.4864 0.3026 0.079*
H20B 0.0984 0.2991 0.2892 0.079*
C21 0.22746 (19) 0.4373 (3) 0.34201 (8) 0.0667 (5)
H21A 0.2128 0.3960 0.3807 0.080*
H21B 0.2987 0.3722 0.3308 0.080*
N1 0.55697 (11) 0.72071 (18) −0.08592 (6) 0.0481 (3)
N2 0.36315 (11) 0.63662 (16) −0.07008 (5) 0.0433 (3)
N3 0.04075 (12) 0.7060 (2) 0.05220 (6) 0.0568 (4)
N4 0.00007 (13) 0.6671 (2) 0.10089 (6) 0.0631 (4)
N5 0.06216 (12) 0.5313 (2) 0.12552 (6) 0.0540 (4)
O1 0.31014 (9) 0.68013 (15) 0.02114 (4) 0.0493 (3)
O2A 0.2984 (3) 0.5903 (4) 0.34478 (14) 0.0678 (8) 0.50
H2A 0.3564 0.5896 0.3752 0.081* 0.50
O2B 0.2355 (3) 0.6236 (4) 0.35259 (13) 0.0616 (8) 0.50
H2B 0.1784 0.6580 0.3697 0.074* 0.50
O3W 0.0201 (2) 1.0729 (4) 0.05595 (13) 0.0792 (8) 0.50
H3WA −0.0015 1.1217 0.0217 0.095* 0.50
H3WB 0.0313 0.9655 0.0481 0.095* 0.50

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0447 (8) 0.0407 (9) 0.0462 (8) 0.0067 (6) 0.0062 (6) 0.0023 (7)
C2 0.0434 (9) 0.0597 (11) 0.0609 (10) 0.0016 (8) 0.0092 (7) −0.0004 (8)
C3 0.0467 (9) 0.0602 (11) 0.0643 (11) −0.0007 (8) −0.0026 (8) −0.0035 (9)
C4 0.0594 (10) 0.0640 (12) 0.0470 (9) 0.0002 (9) −0.0041 (8) −0.0056 (8)
C5 0.0548 (9) 0.0556 (10) 0.0429 (8) 0.0008 (8) 0.0067 (7) −0.0014 (7)
C6 0.0447 (8) 0.0378 (8) 0.0408 (8) 0.0048 (6) 0.0049 (6) 0.0025 (6)
C7 0.0479 (8) 0.0376 (8) 0.0382 (7) 0.0029 (6) 0.0096 (6) 0.0020 (6)
C8 0.0471 (8) 0.0405 (8) 0.0400 (8) 0.0064 (7) 0.0092 (6) 0.0020 (6)
C9 0.0518 (9) 0.0414 (9) 0.0403 (8) 0.0083 (7) 0.0078 (7) 0.0021 (6)
C10 0.0617 (10) 0.0690 (12) 0.0508 (9) −0.0010 (9) 0.0181 (8) −0.0074 (8)
C11 0.0792 (13) 0.0847 (14) 0.0489 (10) 0.0080 (11) 0.0252 (9) −0.0078 (9)
C12 0.0784 (13) 0.0665 (12) 0.0417 (9) 0.0188 (10) 0.0021 (8) −0.0097 (8)
C13 0.0666 (11) 0.0667 (12) 0.0516 (10) 0.0004 (9) 0.0010 (8) −0.0113 (9)
C14 0.0573 (10) 0.0598 (11) 0.0455 (9) 0.0004 (8) 0.0091 (7) −0.0027 (8)
C15 0.0498 (9) 0.0581 (10) 0.0409 (8) −0.0092 (8) 0.0066 (7) −0.0037 (7)
C16 0.0429 (8) 0.0453 (9) 0.0398 (8) −0.0046 (7) 0.0042 (6) −0.0028 (6)
C17 0.0592 (10) 0.0535 (10) 0.0498 (9) 0.0066 (8) 0.0137 (8) 0.0050 (8)
C18 0.0621 (11) 0.1113 (18) 0.0518 (10) −0.0189 (11) 0.0168 (9) 0.0169 (11)
C19 0.0615 (10) 0.0667 (12) 0.0471 (9) −0.0035 (9) 0.0174 (8) 0.0035 (8)
C20 0.0722 (12) 0.0760 (13) 0.0528 (10) −0.0031 (10) 0.0194 (9) 0.0104 (9)
C21 0.0831 (13) 0.0668 (13) 0.0500 (10) −0.0079 (10) 0.0121 (9) 0.0081 (9)
N1 0.0473 (7) 0.0531 (8) 0.0446 (7) 0.0027 (6) 0.0108 (6) −0.0013 (6)
N2 0.0485 (7) 0.0420 (7) 0.0393 (7) 0.0009 (6) 0.0082 (5) −0.0011 (5)
N3 0.0527 (8) 0.0646 (10) 0.0523 (8) 0.0077 (7) 0.0081 (6) 0.0070 (7)
N4 0.0480 (8) 0.0879 (12) 0.0544 (8) 0.0095 (8) 0.0121 (7) 0.0051 (8)
N5 0.0463 (7) 0.0714 (10) 0.0442 (7) −0.0060 (7) 0.0086 (6) 0.0057 (7)
O1 0.0495 (6) 0.0605 (7) 0.0392 (5) −0.0108 (5) 0.0118 (5) −0.0065 (5)
O2A 0.076 (2) 0.067 (2) 0.0591 (17) −0.0163 (18) 0.0112 (16) −0.0002 (14)
O2B 0.0581 (18) 0.073 (2) 0.0571 (16) −0.0114 (16) 0.0198 (14) −0.0072 (13)
O3W 0.0685 (17) 0.0626 (18) 0.098 (2) 0.0057 (13) −0.0061 (15) 0.0313 (15)

Geometric parameters (Å, °)

C1—N1 1.387 (2) C15—O1 1.4409 (19)
C1—C6 1.402 (2) C15—C16 1.487 (2)
C1—C2 1.404 (2) C15—H15A 0.9700
C2—C3 1.375 (2) C15—H15B 0.9700
C2—H2 0.9300 C16—N3 1.345 (2)
C3—C4 1.396 (3) C16—C17 1.364 (2)
C3—H3 0.9300 C17—N5 1.333 (2)
C4—C5 1.362 (2) C17—H17 0.9300
C4—H4 0.9300 C18—N5 1.471 (2)
C5—C6 1.409 (2) C18—C19 1.500 (3)
C5—H5 0.9300 C18—H18A 0.9700
C6—C7 1.420 (2) C18—H18B 0.9700
C7—N2 1.3058 (19) C19—C20 1.520 (2)
C7—O1 1.3404 (17) C19—H19A 0.9700
C8—N1 1.310 (2) C19—H19B 0.9700
C8—N2 1.3710 (19) C20—C21 1.479 (3)
C8—C9 1.493 (2) C20—H20A 0.9700
C9—C14 1.380 (2) C20—H20B 0.9700
C9—C10 1.385 (2) C21—O2A 1.421 (4)
C10—C11 1.390 (3) C21—O2B 1.453 (4)
C10—H10 0.9300 C21—H21A 0.9822
C11—C12 1.364 (3) C21—H21B 1.0253
C11—H11 0.9300 N3—N4 1.3171 (19)
C12—C13 1.373 (3) N4—N5 1.324 (2)
C12—H12 0.9300 O2A—H2A 0.8601
C13—C14 1.385 (2) O2B—H2B 0.8600
C13—H13 0.9300 O3W—H3WA 0.8599
C14—H14 0.9300 O3W—H3WB 0.8599
N1—C1—C6 121.74 (14) N3—C16—C17 107.52 (14)
N1—C1—C2 119.95 (14) N3—C16—C15 122.48 (14)
C6—C1—C2 118.30 (14) C17—C16—C15 129.99 (15)
C3—C2—C1 120.02 (16) N5—C17—C16 105.43 (15)
C3—C2—H2 120.0 N5—C17—H17 127.3
C1—C2—H2 120.0 C16—C17—H17 127.3
C2—C3—C4 121.30 (16) N5—C18—C19 112.75 (15)
C2—C3—H3 119.4 N5—C18—H18A 109.0
C4—C3—H3 119.4 C19—C18—H18A 109.0
C5—C4—C3 119.83 (16) N5—C18—H18B 109.0
C5—C4—H4 120.1 C19—C18—H18B 109.0
C3—C4—H4 120.1 H18A—C18—H18B 107.8
C4—C5—C6 119.86 (15) C18—C19—C20 113.86 (15)
C4—C5—H5 120.1 C18—C19—H19A 108.8
C6—C5—H5 120.1 C20—C19—H19A 108.8
C1—C6—C5 120.69 (15) C18—C19—H19B 108.8
C1—C6—C7 114.81 (13) C20—C19—H19B 108.8
C5—C6—C7 124.51 (14) H19A—C19—H19B 107.7
N2—C7—O1 120.72 (14) C21—C20—C19 113.89 (16)
N2—C7—C6 123.86 (13) C21—C20—H20A 108.8
O1—C7—C6 115.42 (12) C19—C20—H20A 108.8
N1—C8—N2 125.94 (14) C21—C20—H20B 108.8
N1—C8—C9 118.83 (13) C19—C20—H20B 108.8
N2—C8—C9 115.22 (13) H20A—C20—H20B 107.7
C14—C9—C10 118.00 (15) O2A—C21—C20 118.3 (2)
C14—C9—C8 120.39 (14) O2B—C21—C20 103.3 (2)
C10—C9—C8 121.60 (15) O2A—C21—H21A 114.9
C9—C10—C11 120.82 (18) O2B—C21—H21A 100.7
C9—C10—H10 119.6 C20—C21—H21A 113.8
C11—C10—H10 119.6 O2A—C21—H21B 87.0
C12—C11—C10 120.60 (17) O2B—C21—H21B 119.7
C12—C11—H11 119.7 C20—C21—H21B 108.9
C10—C11—H11 119.7 H21A—C21—H21B 110.2
C11—C12—C13 119.00 (16) C8—N1—C1 116.79 (13)
C11—C12—H12 120.5 C7—N2—C8 116.77 (13)
C13—C12—H12 120.5 N4—N3—C16 109.17 (14)
C12—C13—C14 120.86 (18) N3—N4—N5 107.01 (13)
C12—C13—H13 119.6 N4—N5—C17 110.87 (13)
C14—C13—H13 119.6 N4—N5—C18 120.20 (15)
C9—C14—C13 120.70 (16) C17—N5—C18 128.88 (17)
C9—C14—H14 119.6 C7—O1—C15 116.95 (11)
C13—C14—H14 119.6 O2B—O2A—C21 75.9 (4)
O1—C15—C16 105.98 (12) O2B—O2A—H2A 113.3
O1—C15—H15A 110.5 C21—O2A—H2A 111.7
C16—C15—H15A 110.5 C21—O2B—H2A 84.4
O1—C15—H15B 110.5 C21—O2B—H2B 110.5
C16—C15—H15B 110.5 H3WA—O3W—H3WB 105.0
H15A—C15—H15B 108.7
N1—C1—C2—C3 −177.89 (16) N3—C16—C17—N5 0.08 (18)
C6—C1—C2—C3 1.0 (2) C15—C16—C17—N5 178.72 (15)
C1—C2—C3—C4 −0.5 (3) N5—C18—C19—C20 176.04 (18)
C2—C3—C4—C5 −0.1 (3) C18—C19—C20—C21 178.34 (19)
C3—C4—C5—C6 0.2 (3) C19—C20—C21—O2A 41.2 (3)
N1—C1—C6—C5 177.93 (15) C19—C20—C21—O2B 72.5 (2)
C2—C1—C6—C5 −1.0 (2) N2—C8—N1—C1 2.5 (2)
N1—C1—C6—C7 −2.5 (2) C9—C8—N1—C1 −176.43 (13)
C2—C1—C6—C7 178.63 (14) C6—C1—N1—C8 0.2 (2)
C4—C5—C6—C1 0.4 (2) C2—C1—N1—C8 179.13 (15)
C4—C5—C6—C7 −179.21 (16) O1—C7—N2—C8 −179.81 (13)
C1—C6—C7—N2 2.3 (2) C6—C7—N2—C8 0.0 (2)
C5—C6—C7—N2 −178.07 (15) N1—C8—N2—C7 −2.7 (2)
C1—C6—C7—O1 −177.81 (13) C9—C8—N2—C7 176.30 (13)
C5—C6—C7—O1 1.8 (2) C17—C16—N3—N4 −0.03 (19)
N1—C8—C9—C14 172.80 (15) C15—C16—N3—N4 −178.79 (14)
N2—C8—C9—C14 −6.3 (2) C16—N3—N4—N5 −0.04 (19)
N1—C8—C9—C10 −5.6 (2) N3—N4—N5—C17 0.09 (19)
N2—C8—C9—C10 175.30 (15) N3—N4—N5—C18 177.93 (15)
C14—C9—C10—C11 0.6 (3) C16—C17—N5—N4 −0.10 (19)
C8—C9—C10—C11 179.04 (17) C16—C17—N5—C18 −177.71 (16)
C9—C10—C11—C12 −1.2 (3) C19—C18—N5—N4 −113.8 (2)
C10—C11—C12—C13 0.7 (3) C19—C18—N5—C17 63.6 (3)
C11—C12—C13—C14 0.5 (3) N2—C7—O1—C15 0.8 (2)
C10—C9—C14—C13 0.6 (3) C6—C7—O1—C15 −179.06 (13)
C8—C9—C14—C13 −177.90 (15) C16—C15—O1—C7 174.82 (12)
C12—C13—C14—C9 −1.1 (3) C20—C21—O2A—O2B 69.2 (4)
O1—C15—C16—N3 103.78 (17) C20—C21—O2B—O2A −122.3 (4)
O1—C15—C16—C17 −74.7 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O2B—H2B···N1i 0.86 2.08 2.935 (3) 170
O2A—H2A···O3Wii 0.86 1.90 2.757 (4) 176
O3W—H3WA···N3iii 0.86 2.12 2.967 (3) 167
O3W—H3WB···N3 0.86 2.00 2.835 (3) 163

Symmetry codes: (i) x−1/2, −y+3/2, z+1/2; (ii) −x+1/2, y−1/2, −z+1/2; (iii) −x, −y+2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2442).

References

  1. Alvarez, R., Velazquez, S., San-Felix, A., Aquaro, S., De Clercq, E., Perno, C. F., Karlsson, A., Balzarini, J. & Camarasa, M. J. (1994). J. Med. Chem. 37(24), 4185–4194. [DOI] [PubMed]
  2. Bruker (2005). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Chan, J. H., Hong, J. S., Kuyper, L. F., Jones, M. L., Baccanari, D. P., Tansik, R. L., Boytos, C. M., Rudolph, S. K. & Brown, A. D. (1997). J. Heterocycl. Chem. 34, 145–155.
  4. De Clercq, E. (1997). Clin. Microbiol. Rev. 10, 674–693. [DOI] [PMC free article] [PubMed]
  5. De Clercq, E. (2002). Nat. Rev. Drug Discov. 1, 13–25. [DOI] [PubMed]
  6. Dempcy, R. O. & Skibo, E. B. (1991). Biochemistry, 30, 8480–8487. [DOI] [PubMed]
  7. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  8. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  9. Gackenheimer, S. L., Schaus, J. M. & Gehlert, D. R. (1995). J. Pharmacol. Exp. Ther. 274, 1558–1565. [PubMed]
  10. Krim, J., Sillahi, B., Taourirte, M., Rakib, E. M. & Engels, J. W. (2009). ARKIVOC, xiii, 142–152.
  11. Mani Chandrika, P. T., Yakaiah Gayatri, G., Pranay Kumar, K., Narsaiah, B., Murthy, U. S. N. & Raghu Ram Rao, A. (2010). Eur. J. Med. Chem. 45, 78–84. [DOI] [PubMed]
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811027280/fj2442sup1.cif

e-67-o2029-sup1.cif (30.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811027280/fj2442Isup2.hkl

e-67-o2029-Isup2.hkl (181.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811027280/fj2442Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES