Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jul 13;67(Pt 8):o2035. doi: 10.1107/S1600536811027383

(8aRS)-8,8a-Dihydro­furo[3,2-f]indolizine-6,9(4H,7H)-dione

Viktor Vrábel a, Július Sivý b, Łubomír Švorc a, Peter Šafář c, Štefan Marchalín c,*
PMCID: PMC3213484  PMID: 22091063

Abstract

The title compound, C10H9NO3, is a chiral mol­ecule with one stereogenic carbon atom, but which crystallizes as a racemate in the centrosymmetric space group P21/n. The central six-membered ring of the indolizine moiety adopts a definite envelope conformation, while the conformation of the oxopyrrolidine ring is close to that of a flat-envelope with a maximum deviation of 0.352 (1) Å for the flap atom.

Related literature

For properties of indolizine derivatives, see: Malonne et al. (1998); Medda et al. (2003); Sonnet et al. (2000); Campagna et al. (1990); Pearson & Guo (2001); Gupta et al. (2003); Teklu et al. (2005). For their role as synthetic targets for pharmaceuticals, see: Gubin et al. (1992); Ruprecht et al. (1989). For the synthesis of the title compound, see: Szemes et al. (1998). For metric comparison with related compounds, see: Pedersen (1967).graphic file with name e-67-o2035-scheme1.jpg

Experimental

Crystal data

  • C10H9NO3

  • M r = 191.18

  • Monoclinic, Inline graphic

  • a = 7.63534 (19) Å

  • b = 11.7583 (2) Å

  • c = 9.9234 (3) Å

  • β = 105.775 (3)°

  • V = 857.35 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 298 K

  • 0.49 × 0.23 × 0.13 mm

Data collection

  • Oxford Diffraction Gemini R CCD diffractometer

  • Absorption correction: analytical (Clark & Reid, 1995) T min = 0.952, T max = 0.992

  • 14552 measured reflections

  • 2213 independent reflections

  • 1646 reflections with I > 2σ(I)

  • R int = 0.018

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.120

  • S = 1.03

  • 2213 reflections

  • 127 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.16 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: enCIFer (Allen et al., 2004).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811027383/bg2407sup1.cif

e-67-o2035-sup1.cif (16.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811027383/bg2407Isup2.hkl

e-67-o2035-Isup2.hkl (108.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811027383/bg2407Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Grant Agency of the Slovak Republic (grant Nos. 1/0429/11, 1/0679/11) and the Slovak Research and Development Agency under contract No. APVV-0204–10 for financial support for this research program.

supplementary crystallographic information

Comment

Indolizine derivatives have been found to possess a variety of biological activities such as antiinflammatory (Malonne et al., 1998), antiviral (Medda et al., 2003), aromatase inhibitory (Sonnet et al., 2000), analgestic (Campagna et al., 1990) and antitumor (Pearson & Guo, 2001) activities. They have also shown to be calcium entry blockers (Gupta et al., 2003) and potent antioxidants inhibiting lipid peroxidation in vitro (Teklu et al., 2005). As such, indolizines are important synthetic targets in view of developing new pharmaceuticals for the treatment of cardiovascular diseases (Gubin et al., 1992) and HIV infections (Ruprecht et al., 1989).

Based on these facts and in continuation of our interest in developing simple and efficient route for the synthesis of novel indolizine derivatives, we report here the synthesis, molecular and crystal structure of the title compound, (I). The molecular structure and the atom labeling scheme are shown in Fig. 1.

The molecule crystallizes in the monoclinic space group P21/n. Accordingly, the compound is a racemate and consists of two enantiomeric pairs in the unit cell with relative configuration R and S on the C5 carbon atom. The central N-heterocyclic ring is not planar and adopts an envelope conformation for both enantiomers. A calculation of least-squares planes shows that this ring is puckered in such a manner that the five atoms C5, C6, C7, C10 and C11 are coplanar, while atom N1 is displaced from this plane with an out-of-plane displacement of 0.479 (2) Å.

The oxopyrrolidine ring attached to the indolizine ring system has a flat-envelope conformation, with atom C4 on the flap. The maximum deviation from planarity for C4 is 0.352 (1) Å. Obviously, the change of stereochemical centre on C5 from R to S causes changes in orientation of N1, C2, O1, C3 and C4.

The N1—C5 and N1—C11 bonds are approximately equivalent and both are much longer than the N1—C2 bond. Moreover, the N1 atom is sp2 hybridized, as evidenced by the sum of the valence angles around it [358.8 (3)° ]. These data are consistent with conjugation of the lone-pair electrons on N1 with the adjacent carbonyl and agree with literature values for simple amides (Pedersen, 1967).

Experimental

The title compound rac-(8a)-8,8a-dihydrofuro[3,2-f]indolizine-6,9 (4H,7H)-dione was prepared according to a standard protocol described in literature (Szemes et al., 1998).

Refinement

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances in the range 0.93 - 0.98Å and O—H distance 0.85Å and Uiso set at 1.2Ueq of the parent atom.

Figures

Fig. 1.

Fig. 1.

Molecular structure of (I) with the atomic numbering scheme; the chiral centre is C5. Displacement ellipsoids are drawn at the 50% probability level (Brandenburg, 2001).

Fig. 2.

Fig. 2.

Packing diagram.

Crystal data

C10H9NO3 F(000) = 400
Mr = 191.18 Dx = 1.481 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 7934 reflections
a = 7.63534 (19) Å θ = 3.5–29.3°
b = 11.7583 (2) Å µ = 0.11 mm1
c = 9.9234 (3) Å T = 298 K
β = 105.775 (3)° Block, yellow
V = 857.35 (4) Å3 0.49 × 0.23 × 0.13 mm
Z = 4

Data collection

Oxford Diffraction Gemini R CCD diffractometer 2213 independent reflections
Radiation source: fine-focus sealed tube 1646 reflections with I > 2σ(I)
graphite Rint = 0.018
Detector resolution: 10.4340 pixels mm-1 θmax = 29.4°, θmin = 3.5°
Rotation method data acquisition using ω and φ scans h = −10→10
Absorption correction: analytical (Clark & Reid, 1995) k = −15→14
Tmin = 0.952, Tmax = 0.992 l = −13→13
14552 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.063P)2 + 0.130P] where P = (Fo2 + 2Fc2)/3
2213 reflections (Δ/σ)max < 0.001
127 parameters Δρmax = 0.20 e Å3
0 restraints Δρmin = −0.16 e Å3

Special details

Experimental. face-indexed (Oxford Diffraction, 2006)
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C2 1.15109 (18) 0.99636 (12) 0.67889 (14) 0.0438 (3)
C3 1.3182 (2) 1.01426 (13) 0.62848 (17) 0.0543 (4)
H3B 1.4237 1.0285 0.7068 0.065*
H3A 1.3015 1.0783 0.5647 0.065*
C4 1.3418 (2) 0.90534 (14) 0.55443 (18) 0.0584 (4)
H4B 1.4692 0.8843 0.5756 0.070*
H4A 1.2938 0.9134 0.4538 0.070*
C5 1.23351 (17) 0.81624 (11) 0.61138 (14) 0.0439 (3)
H5A 1.3159 0.7767 0.6906 0.053*
C6 1.13528 (19) 0.72915 (11) 0.50495 (14) 0.0456 (3)
C7 0.96776 (18) 0.69128 (11) 0.53212 (13) 0.0429 (3)
C8 0.7398 (2) 0.58131 (13) 0.53142 (16) 0.0539 (4)
H8A 0.6557 0.5223 0.5095 0.065*
C9 0.74188 (18) 0.66085 (12) 0.62999 (14) 0.0475 (3)
H9A 0.6623 0.6671 0.6858 0.057*
C10 0.89106 (17) 0.73291 (11) 0.63038 (13) 0.0408 (3)
C11 0.96560 (19) 0.83359 (13) 0.71747 (14) 0.0483 (3)
H11B 0.8692 0.8880 0.7146 0.058*
H11A 1.0172 0.8106 0.8140 0.058*
N1 1.10563 (14) 0.88532 (10) 0.66294 (11) 0.0425 (3)
O1 1.07083 (16) 1.06761 (9) 0.72905 (13) 0.0636 (3)
O2 1.19841 (17) 0.69185 (9) 0.41368 (12) 0.0654 (3)
O3 0.87461 (14) 0.59746 (9) 0.46802 (10) 0.0535 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C2 0.0435 (6) 0.0436 (7) 0.0472 (7) 0.0004 (5) 0.0176 (5) 0.0013 (5)
C3 0.0515 (8) 0.0506 (8) 0.0679 (9) −0.0066 (6) 0.0282 (7) 0.0042 (7)
C4 0.0544 (8) 0.0586 (9) 0.0760 (10) −0.0066 (7) 0.0412 (8) −0.0008 (7)
C5 0.0412 (6) 0.0457 (7) 0.0519 (7) 0.0039 (5) 0.0249 (6) 0.0033 (6)
C6 0.0541 (7) 0.0405 (7) 0.0511 (7) 0.0077 (6) 0.0294 (6) 0.0049 (5)
C7 0.0476 (7) 0.0408 (7) 0.0437 (7) 0.0003 (5) 0.0180 (6) −0.0004 (5)
C8 0.0480 (8) 0.0501 (8) 0.0624 (9) −0.0075 (6) 0.0131 (7) 0.0025 (7)
C9 0.0428 (7) 0.0526 (8) 0.0495 (7) −0.0036 (6) 0.0169 (6) 0.0068 (6)
C10 0.0419 (6) 0.0441 (7) 0.0392 (6) −0.0003 (5) 0.0161 (5) 0.0044 (5)
C11 0.0504 (7) 0.0550 (8) 0.0492 (7) −0.0092 (6) 0.0301 (6) −0.0073 (6)
N1 0.0428 (6) 0.0440 (6) 0.0487 (6) −0.0026 (5) 0.0263 (5) −0.0035 (5)
O1 0.0681 (7) 0.0486 (6) 0.0852 (8) 0.0021 (5) 0.0396 (6) −0.0122 (5)
O2 0.0849 (8) 0.0569 (6) 0.0742 (7) 0.0039 (6) 0.0552 (7) −0.0080 (5)
O3 0.0584 (6) 0.0480 (6) 0.0559 (6) −0.0029 (4) 0.0188 (5) −0.0085 (4)

Geometric parameters (Å, °)

C2—O1 1.2211 (16) C6—C7 1.4472 (18)
C2—N1 1.3492 (18) C7—C10 1.3578 (17)
C2—C3 1.5062 (18) C7—O3 1.3717 (16)
C3—C4 1.512 (2) C8—C9 1.350 (2)
C3—H3B 0.9700 C8—O3 1.3579 (18)
C3—H3A 0.9700 C8—H8A 0.9300
C4—C5 1.5345 (19) C9—C10 1.4188 (18)
C4—H4B 0.9700 C9—H9A 0.9300
C4—H4A 0.9700 C10—C11 1.4848 (19)
C5—N1 1.4651 (15) C11—N1 1.4562 (15)
C5—C6 1.515 (2) C11—H11B 0.9700
C5—H5A 0.9800 C11—H11A 0.9700
C6—O2 1.2176 (16)
O1—C2—N1 124.75 (12) C7—C6—C5 111.91 (10)
O1—C2—C3 127.14 (13) C10—C7—O3 110.64 (11)
N1—C2—C3 108.08 (11) C10—C7—C6 126.76 (13)
C2—C3—C4 105.48 (12) O3—C7—C6 122.29 (11)
C2—C3—H3B 110.6 C9—C8—O3 112.18 (12)
C4—C3—H3B 110.6 C9—C8—H8A 123.9
C2—C3—H3A 110.6 O3—C8—H8A 123.9
C4—C3—H3A 110.6 C8—C9—C10 105.49 (12)
H3B—C3—H3A 108.8 C8—C9—H9A 127.3
C3—C4—C5 104.60 (11) C10—C9—H9A 127.3
C3—C4—H4B 110.8 C7—C10—C9 106.58 (12)
C5—C4—H4B 110.8 C7—C10—C11 122.24 (11)
C3—C4—H4A 110.8 C9—C10—C11 131.16 (11)
C5—C4—H4A 110.8 N1—C11—C10 108.71 (10)
H4B—C4—H4A 108.9 N1—C11—H11B 109.9
N1—C5—C6 111.56 (10) C10—C11—H11B 109.9
N1—C5—C4 103.12 (11) N1—C11—H11A 109.9
C6—C5—C4 114.77 (12) C10—C11—H11A 109.9
N1—C5—H5A 109.1 H11B—C11—H11A 108.3
C6—C5—H5A 109.1 C2—N1—C11 123.51 (10)
C4—C5—H5A 109.1 C2—N1—C5 113.76 (10)
O2—C6—C7 125.20 (14) C11—N1—C5 121.64 (11)
O2—C6—C5 122.74 (13) C8—O3—C7 105.10 (10)
O1—C2—C3—C4 −170.54 (15) C8—C9—C10—C7 −0.07 (15)
N1—C2—C3—C4 11.15 (17) C8—C9—C10—C11 −178.40 (15)
C2—C3—C4—C5 −20.30 (17) C7—C10—C11—N1 9.17 (19)
C3—C4—C5—N1 21.70 (16) C9—C10—C11—N1 −172.72 (13)
C3—C4—C5—C6 143.24 (13) O1—C2—N1—C11 −6.8 (2)
N1—C5—C6—O2 152.99 (13) C3—C2—N1—C11 171.60 (12)
C4—C5—C6—O2 36.17 (19) O1—C2—N1—C5 −174.95 (14)
N1—C5—C6—C7 −31.17 (16) C3—C2—N1—C5 3.41 (16)
C4—C5—C6—C7 −147.98 (12) C10—C11—N1—C2 153.77 (12)
O2—C6—C7—C10 −178.15 (14) C10—C11—N1—C5 −38.95 (17)
C5—C6—C7—C10 6.1 (2) C6—C5—N1—C2 −139.84 (12)
O2—C6—C7—O3 9.0 (2) C4—C5—N1—C2 −16.15 (16)
C5—C6—C7—O3 −166.75 (11) C6—C5—N1—C11 51.73 (16)
O3—C8—C9—C10 −0.56 (16) C4—C5—N1—C11 175.42 (12)
O3—C7—C10—C9 0.67 (15) C9—C8—O3—C7 0.96 (16)
C6—C7—C10—C9 −172.91 (13) C10—C7—O3—C8 −0.99 (15)
O3—C7—C10—C11 179.19 (12) C6—C7—O3—C8 172.92 (13)
C6—C7—C10—C11 5.6 (2)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2407).

References

  1. Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.
  2. Brandenburg, K. (2001). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Campagna, F., Carotti, A., Casini, G. & Macripo, M. (1990). Heterocycles, 31, 97–107.
  4. Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.
  5. Gubin, J., Lucchetti, J., Mahaux, J., Nisato, D., Rosseels, G., Clinet, M., Polster, P. & Chatelain, P. (1992). J. Med. Chem. 35, 981–988. [DOI] [PubMed]
  6. Gupta, S. P., Mathur, A. N., Nagappa, A. N., Kumar, D. & Kumaran, S. (2003). Eur. J. Med. Chem. 38, 867–873. [DOI] [PubMed]
  7. Malonne, H., Hanuise, J. & Fontaine, J. (1998). Pharm. Pharmacol. Commun. 4, 241–243.
  8. Medda, S., Jaisankar, P., Manna, R. K., Pal, B., Giri, V. S. & Basu, M. K. (2003). J. Drug Target. 11, 123–128. [DOI] [PubMed]
  9. Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abingdon, England.
  10. Pearson, W. H. & Guo, L. (2001). Tetrahedron Lett. 42, 8267–8271.
  11. Pedersen, B. F. (1967). Acta Chem. Scand. 21, 1415–1424.
  12. Ruprecht, R. M., Mullaney, S., Andersen, J. & Bronson, R. (1989). J. Acquir. Immune Defic. Syndr. 2, 149–157. [PubMed]
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Sonnet, P., Dallemagne, P., Guillom, J., Engueard, C., Stiebing, S., Tangue, J., Bureau, B., Rault, S., Auvray, P., Moslemi, S., Sourdaine, P. & Seralini, G. E. (2000). Bioorg. Med. Chem. 8, 945–955. [DOI] [PubMed]
  15. Szemes, F., Marchalín, Š., Bar, N. & Decroix, B. (1998). J. Heterocycl. Chem. 35, 1371–1375.
  16. Teklu, S., Gundersen, L. L., Larsen, T., Malterud, K. E. & Rise, F. (2005). Bioorg. Med. Chem. 13, 3127–3139. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811027383/bg2407sup1.cif

e-67-o2035-sup1.cif (16.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811027383/bg2407Isup2.hkl

e-67-o2035-Isup2.hkl (108.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811027383/bg2407Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES