Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jul 16;67(Pt 8):o2038. doi: 10.1107/S1600536811027577

4-Hydrazinyl­idene-1-methyl-3H-2λ6,1-benzothia­zine-2,2-dione

Muhammad Shafiq a, Islam Ullah Khan a, Muhammad Zia-ur-Rehman b, Muhammad Nadeem Arshad c,*,, Abdullah M Asiri d
PMCID: PMC3213487  PMID: 22091066

Abstract

In the title compound, C9H11N3O2S, the thia­zine ring adopts a half-chair conformation. In the crystal structure N—H⋯N hydrogen bonds connect two mol­ecules into a centrosymmetric dimer, forming an R 2 2(6) ring motif. These dimers are further connected into chains by N—H⋯O and C—H⋯O hydrogen bonds.

Related literature

For the synthesis of the title compound, see: Shafiq et al. (2011b ). For information on 1,2 and 2,1-benzothia­zine, see: Shafiq et al. (2011a ); Arshad et al. (2011). For related structures, see: Tahir et al. (2008); Khan et al. (2010); Shafiq et al. (2009); Arshad et al. (2009). For graph-set notation of hydrogen bonds, see: Bernstein et al. (1995).graphic file with name e-67-o2038-scheme1.jpg

Experimental

Crystal data

  • C9H11N3O2S

  • M r = 225.27

  • Monoclinic, Inline graphic

  • a = 6.6643 (2) Å

  • b = 9.6834 (3) Å

  • c = 15.5890 (5) Å

  • β = 97.699 (1)°

  • V = 996.94 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 296 K

  • 0.41 × 0.22 × 0.18 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007) T min = 0.884, T max = 0.947

  • 8966 measured reflections

  • 2426 independent reflections

  • 2114 reflections with I > 2σ(I)

  • R int = 0.020

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036

  • wR(F 2) = 0.111

  • S = 0.93

  • 2426 reflections

  • 143 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811027577/bt5565sup1.cif

e-67-o2038-sup1.cif (16.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811027577/bt5565Isup2.hkl

e-67-o2038-Isup2.hkl (116.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811027577/bt5565Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H1N⋯O1i 0.86 (2) 2.46 (2) 3.221 (2) 147.7 (17)
N3—H2N⋯N2ii 0.790 (19) 2.376 (19) 3.094 (2) 151.8 (19)
C8—H8A⋯O1i 0.97 2.59 3.4178 (19) 144

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors acknowledge the Higher Education Commission of Pakistan for providing a grant for the project to strengthen the Materials Chemistry Laboratory at GC University Lahore, Pakistan.

supplementary crystallographic information

Comment

We are already engaged in the synthesis (Shafiq et al., 2011a), (Arshad et al., 2011) and crystallographic studies of 1,2- & 2,1-benzothiazine molecules (Arshad et al., 2009), (Shafiq et al., 2009). Here in, we report the crystal structure of hydrazide (I), synthesized from 1-methyl-1H-2,1-benzothiazin-4(3H)-one 2,2-dioxide (II) (Tahir et al., 2008).

In the crystal structure of title compound, the bond lengths and angles are almost similar to structurally similar molecules (II) and 1-propyl-1H-2,1-benzothiazin-4(3H)-one 2,2-dioxide (III) (Khan et al., 2010). The fused aromatic and thiazine rings are twisted at dihedral angle of 11.13 (8)°. The thiazine ring (C1/C6/C7/C8/S1/N1) adopted the sofa shape with the r. m. s. deviavtion of fitted atoms of 0.2380Å showing the maximum deviation for the S1 (0.3969 (8)Å) & C8 (0.2687 (7)Å). The molecules in the crystal structure dimerized through N—H···N hydrogen bonding forming six-membered R22(6) ring motif (Bernstein et al., 1995). There are C—H···O and N—H···N type interactions which connect the dimers in zig-zag mode along c axis and a axis and generate another seven membered ring motif R21(7).

Experimental

The synthesis of title compound have already been reportrd (Shafiq et al., 2011b). Suitable crystals were grown in dry ethanol under slow evaporation.

Refinement

H-atoms bonded to C were positioned with idealized geometry with C—H = 0.93 Å for aromatic, C—H = 0.96 Å for methyl group and C—H = 0.97 Å for methylene group and were refined using a riding model with Uiso(H) = 1.2 Ueq(C) for aromatic and methylene and with Uiso(H) = 1.5 Ueq(C) for methyl carbon atoms. The coordinates of the H atoms bonded to N were refined with Uiso(H) = 1.2 Ueq(N). Four reflections (-1 0 1, 0 1 1, 0 0 2 and -1 0 9) have been omitted in final refinement.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with displacement ellipsoids drawn at 50% probability level.

Fig. 2.

Fig. 2.

Perspective view showing the dimers and hydrogen bonding via dashed lines, hydrogen atoms not involved in hydrogen bonding have been omitted for clarity.

Crystal data

C9H11N3O2S F(000) = 472
Mr = 225.27 Dx = 1.501 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 5698 reflections
a = 6.6643 (2) Å θ = 3.7–28.3°
b = 9.6834 (3) Å µ = 0.31 mm1
c = 15.5890 (5) Å T = 296 K
β = 97.699 (1)° Needle, yellow
V = 996.94 (5) Å3 0.41 × 0.22 × 0.18 mm
Z = 4

Data collection

Bruker Kappa APEXII CCD diffractometer 2426 independent reflections
Radiation source: fine-focus sealed tube 2114 reflections with I > 2σ(I)
graphite Rint = 0.020
φ and ω scans θmax = 28.3°, θmin = 3.7°
Absorption correction: multi-scan (SADABS; Bruker, 2007) h = −6→8
Tmin = 0.884, Tmax = 0.947 k = −11→12
8966 measured reflections l = −19→20

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111 H atoms treated by a mixture of independent and constrained refinement
S = 0.93 w = 1/[σ2(Fo2) + (0.0763P)2 + 0.3098P] where P = (Fo2 + 2Fc2)/3
2426 reflections (Δ/σ)max < 0.001
143 parameters Δρmax = 0.30 e Å3
0 restraints Δρmin = −0.29 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.8692 (2) 0.28978 (14) 0.04960 (9) 0.0354 (3)
C2 0.7617 (2) 0.38627 (17) −0.00433 (10) 0.0460 (4)
H2 0.6510 0.4306 0.0138 0.055*
C3 0.8167 (3) 0.41727 (17) −0.08437 (11) 0.0491 (4)
H3 0.7420 0.4811 −0.1200 0.059*
C4 0.9815 (3) 0.35393 (17) −0.11144 (10) 0.0468 (4)
H4 1.0209 0.3765 −0.1647 0.056*
C5 1.0884 (2) 0.25656 (16) −0.05909 (10) 0.0409 (3)
H5 1.1990 0.2134 −0.0781 0.049*
C6 1.0349 (2) 0.22102 (13) 0.02180 (9) 0.0328 (3)
C7 1.1508 (2) 0.11464 (13) 0.07523 (8) 0.0341 (3)
C8 1.0878 (3) 0.07413 (16) 0.16103 (10) 0.0454 (4)
H8A 1.2040 0.0386 0.1987 0.054*
H8B 0.9866 0.0017 0.1524 0.054*
C9 0.6206 (3) 0.3164 (2) 0.15568 (14) 0.0609 (5)
H9A 0.6343 0.4141 0.1652 0.091*
H9B 0.5906 0.2723 0.2076 0.091*
H9C 0.5128 0.2991 0.1096 0.091*
N1 0.80990 (19) 0.26108 (15) 0.13215 (9) 0.0446 (3)
N2 1.30403 (19) 0.06040 (13) 0.04671 (8) 0.0427 (3)
N3 1.4169 (2) −0.03646 (17) 0.09606 (11) 0.0565 (4)
O1 1.14407 (18) 0.31926 (13) 0.22310 (7) 0.0515 (3)
O2 0.8941 (2) 0.17659 (15) 0.28274 (8) 0.0587 (3)
S1 0.98824 (5) 0.21730 (4) 0.20972 (2) 0.03865 (15)
H1N 1.357 (3) −0.087 (2) 0.1305 (13) 0.046*
H2N 1.494 (3) −0.070 (2) 0.0678 (12) 0.046*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0314 (6) 0.0370 (7) 0.0375 (7) 0.0038 (5) 0.0035 (5) −0.0031 (5)
C2 0.0376 (7) 0.0488 (8) 0.0501 (8) 0.0144 (6) 0.0008 (6) −0.0016 (7)
C3 0.0513 (8) 0.0484 (8) 0.0442 (8) 0.0120 (7) −0.0065 (6) 0.0047 (6)
C4 0.0572 (9) 0.0476 (8) 0.0345 (7) 0.0076 (7) 0.0028 (6) 0.0034 (6)
C5 0.0457 (8) 0.0419 (7) 0.0356 (7) 0.0095 (6) 0.0075 (6) −0.0007 (6)
C6 0.0338 (6) 0.0312 (6) 0.0334 (6) 0.0043 (5) 0.0040 (5) −0.0026 (5)
C7 0.0363 (6) 0.0317 (6) 0.0350 (6) 0.0052 (5) 0.0076 (5) −0.0005 (5)
C8 0.0563 (9) 0.0386 (7) 0.0445 (8) 0.0131 (6) 0.0188 (7) 0.0076 (6)
C9 0.0404 (8) 0.0763 (12) 0.0702 (12) 0.0155 (8) 0.0231 (8) 0.0002 (10)
N1 0.0331 (6) 0.0560 (7) 0.0470 (7) 0.0112 (5) 0.0137 (5) 0.0033 (6)
N2 0.0440 (6) 0.0422 (6) 0.0437 (6) 0.0151 (5) 0.0122 (5) 0.0063 (5)
N3 0.0554 (8) 0.0581 (9) 0.0595 (9) 0.0307 (7) 0.0210 (7) 0.0176 (7)
O1 0.0558 (7) 0.0577 (7) 0.0402 (6) −0.0082 (5) 0.0041 (5) −0.0058 (5)
O2 0.0627 (7) 0.0715 (8) 0.0479 (7) 0.0109 (6) 0.0288 (6) 0.0109 (6)
S1 0.0408 (2) 0.0428 (2) 0.0345 (2) 0.00504 (13) 0.01310 (14) 0.00140 (12)

Geometric parameters (Å, °)

C1—C2 1.390 (2) C8—S1 1.7532 (15)
C1—C6 1.4068 (19) C8—H8A 0.9700
C1—N1 1.4234 (19) C8—H8B 0.9700
C2—C3 1.380 (2) C9—N1 1.4616 (19)
C2—H2 0.9300 C9—H9A 0.9600
C3—C4 1.373 (2) C9—H9B 0.9600
C3—H3 0.9300 C9—H9C 0.9600
C4—C5 1.381 (2) N1—S1 1.6338 (14)
C4—H4 0.9300 N2—N3 1.3721 (18)
C5—C6 1.398 (2) N3—H1N 0.86 (2)
C5—H5 0.9300 N3—H2N 0.790 (19)
C6—C7 1.4761 (18) O1—S1 1.4278 (12)
C7—N2 1.2801 (17) O2—S1 1.4270 (12)
C7—C8 1.5063 (19)
C2—C1—C6 119.61 (14) S1—C8—H8A 109.6
C2—C1—N1 119.68 (13) C7—C8—H8B 109.6
C6—C1—N1 120.71 (13) S1—C8—H8B 109.6
C3—C2—C1 121.03 (14) H8A—C8—H8B 108.1
C3—C2—H2 119.5 N1—C9—H9A 109.5
C1—C2—H2 119.5 N1—C9—H9B 109.5
C4—C3—C2 120.07 (14) H9A—C9—H9B 109.5
C4—C3—H3 120.0 N1—C9—H9C 109.5
C2—C3—H3 120.0 H9A—C9—H9C 109.5
C3—C4—C5 119.60 (15) H9B—C9—H9C 109.5
C3—C4—H4 120.2 C1—N1—C9 120.59 (14)
C5—C4—H4 120.2 C1—N1—S1 117.21 (10)
C4—C5—C6 121.84 (14) C9—N1—S1 118.42 (13)
C4—C5—H5 119.1 C7—N2—N3 119.27 (13)
C6—C5—H5 119.1 N2—N3—H1N 118.0 (13)
C5—C6—C1 117.81 (13) N2—N3—H2N 108.4 (14)
C5—C6—C7 120.23 (12) H1N—N3—H2N 121 (2)
C1—C6—C7 121.95 (13) O2—S1—O1 117.61 (8)
N2—C7—C6 118.14 (12) O2—S1—N1 107.94 (8)
N2—C7—C8 122.12 (12) O1—S1—N1 111.81 (8)
C6—C7—C8 119.74 (11) O2—S1—C8 111.06 (8)
C7—C8—S1 110.19 (10) O1—S1—C8 107.46 (8)
C7—C8—H8A 109.6 N1—S1—C8 99.48 (8)
C6—C1—C2—C3 −0.9 (2) C6—C7—C8—S1 −33.65 (17)
N1—C1—C2—C3 179.38 (15) C2—C1—N1—C9 9.0 (2)
C1—C2—C3—C4 −0.9 (3) C6—C1—N1—C9 −170.69 (15)
C2—C3—C4—C5 1.7 (3) C2—C1—N1—S1 −148.76 (13)
C3—C4—C5—C6 −0.7 (3) C6—C1—N1—S1 31.55 (18)
C4—C5—C6—C1 −1.1 (2) C6—C7—N2—N3 178.54 (14)
C4—C5—C6—C7 178.92 (14) C8—C7—N2—N3 −0.9 (2)
C2—C1—C6—C5 1.9 (2) C1—N1—S1—O2 −172.78 (11)
N1—C1—C6—C5 −178.42 (13) C9—N1—S1—O2 28.97 (17)
C2—C1—C6—C7 −178.15 (13) C1—N1—S1—O1 56.36 (14)
N1—C1—C6—C7 1.5 (2) C9—N1—S1—O1 −101.89 (15)
C5—C6—C7—N2 2.4 (2) C1—N1—S1—C8 −56.87 (13)
C1—C6—C7—N2 −177.54 (13) C9—N1—S1—C8 144.88 (15)
C5—C6—C7—C8 −178.13 (13) C7—C8—S1—O2 169.33 (11)
C1—C6—C7—C8 1.9 (2) C7—C8—S1—O1 −60.75 (13)
N2—C7—C8—S1 145.78 (13) C7—C8—S1—N1 55.82 (12)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N3—H1N···O1i 0.86 (2) 2.46 (2) 3.221 (2) 147.7 (17)
N3—H2N···N2ii 0.790 (19) 2.376 (19) 3.094 (2) 151.8 (19)
C8—H8A···O1i 0.97 2.59 3.4178 (19) 144.

Symmetry codes: (i) −x+5/2, y−1/2, −z+1/2; (ii) −x+3, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5565).

References

  1. Arshad, M. N., Khan, I. U., Zia-ur-Rehman, M. & Shafiq, M. (2011). Asian J. Chem. 23, 2801–2805.
  2. Arshad, M. N., Zia-ur-Rehman, M. & Khan, I. U. (2009). Acta Cryst. E65, o3077. [DOI] [PMC free article] [PubMed]
  3. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  4. Bruker (2007). SADABS, APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  6. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  7. Khan, I. U., Shafiq, M. & Arshad, M. N. (2010). Acta Cryst. E66, o2839. [DOI] [PMC free article] [PubMed]
  8. Shafiq, M., Khan, I. U., Arshad, M. N. & Siddiqui, W. A. (2011a). Asian J. Chem. 23, 2101–2105.
  9. Shafiq, M., Tahir, M. N., Khan, I. U., Arshad, M. N. & Safdar, M. (2009). Acta Cryst. E65, o393. [DOI] [PMC free article] [PubMed]
  10. Shafiq, M., Zia-ur-Rehman, M., Khan, I. U., Arshad, M. N. & Khan, S. A. (2011b). J. Chil. Chem. Soc. 56, 527–531.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  13. Tahir, M. N., Shafiq, M., Khan, I. U., Siddiqui, W. A. & Arshad, M. N. (2008). Acta Cryst. E64, o557. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811027577/bt5565sup1.cif

e-67-o2038-sup1.cif (16.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811027577/bt5565Isup2.hkl

e-67-o2038-Isup2.hkl (116.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811027577/bt5565Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES