Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jul 16;67(Pt 8):o2040. doi: 10.1107/S1600536811027619

7-Meth­oxy-1-(4-nitro­benzo­yl)naph­thalen-2-yl 4-nitro­benzoate

Toyokazu Muto a, Daichi Hijikata a, Akiko Okamoto a,*, Hideaki Oike a, Noriyuki Yonezawa a
PMCID: PMC3213489  PMID: 22091068

Abstract

In the title compound, C25H16N2O8, the dihedral angle between the naphthalene ring system and the benzene ring of the nitro­phenyl ketone unit is 82.64 (7)°. The bridging ester O—C(=O)—C plane makes dihedral angles of 42.12 (8) and 11.47 (9)°, respectively, with the naphthalene ring system and the benzene ring of the nitro­phenyl ester unit. In the crystal, two types of weak inter­molecular C—H⋯O inter­actions are observed.

Related literature

For electrophilic aromatic substitution of naphthalene deriv­atives, see: Okamoto & Yonezawa (2009). For the structures of closely related compounds, see: Muto et al. (2010); Mitsui, Nakaema, Noguchi, Okamoto & Yonezawa (2008); Mitsui, Nakaema, Noguchi & Yonezawa (2008); Mitsui et al. (2009); Nagasawa et al. (2010); Watanabe et al. (2010).graphic file with name e-67-o2040-scheme1.jpg

Experimental

Crystal data

  • C25H16N2O8

  • M r = 472.40

  • Triclinic, Inline graphic

  • a = 7.30691 (15) Å

  • b = 10.2555 (2) Å

  • c = 14.7645 (3) Å

  • α = 84.750 (1)°

  • β = 86.278 (1)°

  • γ = 74.079 (1)°

  • V = 1058.57 (4) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.95 mm−1

  • T = 193 K

  • 0.60 × 0.20 × 0.10 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 1999) T min = 0.599, T max = 0.911

  • 19272 measured reflections

  • 3818 independent reflections

  • 2769 reflections with I > 2σ(I)

  • R int = 0.046

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.124

  • S = 1.09

  • 3818 reflections

  • 319 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811027619/is2749sup1.cif

e-67-o2040-sup1.cif (22.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811027619/is2749Isup2.hkl

e-67-o2040-Isup2.hkl (183.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811027619/is2749Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O7i 0.95 2.58 3.211 (3) 124
C23—H23⋯O4ii 0.95 2.55 3.435 (2) 154

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors express their gratitude to Masters Yuichi Kato and Atsushi Nagasawa, Department of Organic and Polymer Materials Chemistry, Graduate School, Tokyo University of Agriculture & Technology, and Professor Keiichi Noguchi, Instrumentation Analysis Center, Tokyo University of Agriculture & Technology, for technical advice.

supplementary crystallographic information

Comment

In the course of our study on electrophilic aromatic aroylation of 2,7-dimethoxynaphthalene, peri-aroylnaphthalene compounds have proven to be formed regioselectively with the aid of suitable acidic mediators (Okamoto & Yonezawa, 2009). Recently, we have reported the crystal structures of several 1,8-diaroylated naphthalene homologues exemplified by 1,8-bis(4-methylbenzoyl)-2,7-dimethoxynaphthalene (Muto et al., 2010). The aroyl groups at the 1,8-positions of the naphthalene rings in these compounds are twistedly connected in an almost perpendicular fashion, but the benzene ring moieties of the aroyl groups tilt slightly toward the exo sides of the naphthalene rings. The crystal structures of 1-monoaroylated naphthalene compounds such as 2,7-dimethoxy-1-(4-nitrobenzoyl)naphthalene (Watanabe et al., 2010) also exhibit essentially the same non-coplanar structure as the 1,8-diaroylated naphthalenes. Furthermore, the crystal structures of several 1-monoaroylated naphthalene derivatives have revealed. For example, (2-hydroxy-7-methoxynaphthalen-1-yl)(4-methylphenyl)methanone (Nagasawa et al., 2010) and (4-chlorophenyl)(2-hydroxy-7-methoxynaphthalen-1-yl)methanone (Mitsui, Nakaema, Noguchi & Yonezawa, 2008) prepared by regioselective demethylation form intramolecular hydrogen bond between the carbonyl group and the adjacent hydroxy one. Besides, (4-chlorobenzoyl)(2-ethoxy-7-methoxynaphthalen-1-yl)methanone (Mitsui et al., 2009) has similar non-coplanar configuration to 1-(4-chlorobenzoyl)-2,7-dimethoxynaphthalene (Mitsui, Nakaema, Noguchi, Okamoto & Yonezawa, 2008). As a part of our continuous studies on the molecular structures of this kind of homologous molecules, the crystal structure of the title compound, 1-monoaroylated naphthalene bearing 4-nitrobenzoyloxy group at 2-position is discussed in this report.

The molecular structure of the title compound is displayed in Fig. 1. The benzene ring of nitrophenyl ketone moiety (C12–C17) is out of the plane of the naphthalene ring. The dihedral angle between the best planes of the benzene ring (C12–C17) and the naphthalene ring system (C1–C10) is 82.64 (7)° [C2–C1–C11–O1 torsion angle = -79.8 (2)°]. However, the carbonyl group (C11═O1) and the benzene ring (C12–C17) have almost coplanar configuration [O1–C11–C12–C17 torsion angle = 5.0 (2)°]. Besides, the dihedral angle between the benzene ring (C12–C17) and the nitro group plane (O4/N1/O5) is 29.35 (9)°. On the other hand, the benzene ring of nitrophenyl ester moiety (C19–C24) makes a rather small dihedral angle with naphthalene ring system (C1–C10) than that with the benzene ring of nitrophenyl ketone moiety (C12–C17), i.e., 31.38 (7)°. Moreover, the dihedral angles of the benzene ring (C19–C24) and the naphthalene ring system (C1–C10) with the ester plane (O2—C18(═ O6)—C19) are 11.47 (9)° and 42.12 (8)°, respectively. The nitro group plane (O7/N2/O8) makes a small dihedral angle of 6.47 (10)° with the benzene ring (C19–C24). In the crystal structure, the molecular packing of the title compound is stabilized mainly by van der Waals interactions. The crystal packing is additionally stabilized by intermolecular C—H···O interaction between the oxygen atom (O7) of the nitro group in nitrophenyl ester and one hydrogen atom (H6) of the naphthalene ring of the adjacent molecule (C6—H6···O7i; Fig. 2 and Table 1). Moreover, there is also intermolecular C—H···O interaction between the oxygen atom (O4) of the nitro group in nitrophenyl ketone and one hydrogen atom (H23) of the nitrophenyl ester of the adjacent molecule (C23—H23···O4ii; Fig. 3 and Table 1).

Experimental

To a 100 ml flask, 4-nitrobenzoyl chloride (17 mmol, 3.173 g), aluminium chloride (18.7 mmol, 2.495 g) and methylene chloride (21 ml) were placed and stirred at 273 K. To the reaction mixture thus obtained, 2,7-dimethoxynaphthalene (8.5 mmol, 1.599 g) was added. After the reaction mixture was stirred at 273 K for 60 h, it was poured into ice-cold water (10 ml). The aqueous layer was extracted with CHCl3 (10 ml × 3). The combined extracts were washed with 2 M aqueous NaOH followed by washing with brine. The organic layers thus obtained were dried over anhydrous MgSO4. The solvent was removed under reduced pressure to give cake. The crude product was purified by silica-gel chromatography from CHCl3. Yellow platelet single crystals suitable for X-ray diffraction were obtained by crystallization from ethanol (10 mg, 0.2% yield).

1H NMR δ (300 MHz, CDCl3); 3.75 (3H, s), 6.91 (1H, d, J = 2.4 Hz), 7.24 (1H, dd, J = 2.4, 9.0 Hz), 7.34 (1H, d, J = 8.4 Hz), 7.89 (1H, d, J = 9.0 Hz), 7.98 (2H, d, J = 9.0 Hz), 8.00 (2H, d, J = 8.4 Hz), 8.04 (1H, d, J = 9.0 Hz), 8.21 (2H, d, J = 8.4 Hz), 8.22 (2H, d, J = 9.3 Hz) p.p.m..

13C NMR δ (75 MHz, CDCl3); 55.32, 103.27, 118.37, 119.57, 123.65, 123.93, 125.45, 127.27, 130.14, 130.39, 131.00, 132.03, 132.54, 133.55, 141.98, 146.62, 150.55, 150.96, 159.37, 162.57, 194.18 p.p.m..

IR (KBr); 1746, 1679, 1619, 1525, 1349, 1234, 1208 cm-1

HRMS (m/z); [M + H]+ Calcd for C25H17N2O8, 473.0985; found, 473.0977.

m.p. = 452.0–454.0 K

Refinement

All H atoms were found in a difference map and were subsequently refined as riding atoms, with C—H = 0.95 (aromatic) and 0.98 (methyl) Å, and with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with displacement ellipsoids at 50% probability.

Fig. 2.

Fig. 2.

A partial packing diagram of the title compound, showing intermolecular C6—H6···O7i interactions [symmetry code: (i) x, y, 1 + z].

Fig. 3.

Fig. 3.

A partial packing diagram of the title compound, showing intermolecular C23—H23···O4ii interactions [symmetry code: (ii) 3 - x, -y, -z].

Crystal data

C25H16N2O8 Z = 2
Mr = 472.40 F(000) = 488
Triclinic, P1 Dx = 1.482 Mg m3
Hall symbol: -P 1 Melting point = 452.0–454.0 K
a = 7.30691 (15) Å Cu Kα radiation, λ = 1.54187 Å
b = 10.2555 (2) Å Cell parameters from 13543 reflections
c = 14.7645 (3) Å θ = 3.0–68.2°
α = 84.750 (1)° µ = 0.95 mm1
β = 86.278 (1)° T = 193 K
γ = 74.079 (1)° Platelet, yellow
V = 1058.57 (4) Å3 0.60 × 0.20 × 0.10 mm

Data collection

Rigaku R-AXIS RAPID diffractometer 3818 independent reflections
Radiation source: rotating anode 2769 reflections with I > 2σ(I)
graphite Rint = 0.046
Detector resolution: 10.00 pixels mm-1 θmax = 68.2°, θmin = 3.0°
ω scans h = −8→8
Absorption correction: numerical (NUMABS; Higashi, 1999) k = −12→12
Tmin = 0.599, Tmax = 0.911 l = −17→17
19272 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041 H-atom parameters constrained
wR(F2) = 0.124 w = 1/[σ2(Fo2) + (0.066P)2] where P = (Fo2 + 2Fc2)/3
S = 1.09 (Δ/σ)max < 0.001
3818 reflections Δρmax = 0.25 e Å3
319 parameters Δρmin = −0.22 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0109 (9)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.72939 (15) 0.14056 (11) 0.14376 (8) 0.0481 (3)
O2 0.81352 (16) 0.41705 (10) 0.13883 (8) 0.0441 (3)
O3 0.7430 (2) −0.05991 (14) 0.52467 (9) 0.0626 (4)
O4 1.72999 (17) −0.14620 (12) 0.21963 (9) 0.0572 (4)
O5 1.69619 (17) −0.13852 (12) 0.07413 (10) 0.0550 (4)
O6 0.57830 (17) 0.61275 (11) 0.12164 (8) 0.0497 (3)
O7 0.8971 (2) 0.37502 (16) −0.32155 (10) 0.0792 (5)
O8 0.7462 (2) 0.58713 (17) −0.34326 (9) 0.0801 (5)
N1 1.6332 (2) −0.11728 (13) 0.15166 (11) 0.0460 (4)
N2 0.8126 (2) 0.48522 (19) −0.29361 (11) 0.0587 (4)
C1 0.7879 (2) 0.26316 (16) 0.26282 (11) 0.0383 (4)
C2 0.7743 (2) 0.39621 (16) 0.23280 (12) 0.0416 (4)
C3 0.7412 (2) 0.50013 (18) 0.29209 (13) 0.0498 (5)
H3 0.7355 0.5910 0.2698 0.060*
C4 0.7176 (3) 0.46701 (19) 0.38256 (14) 0.0525 (5)
H4 0.6969 0.5362 0.4237 0.063*
C5 0.7230 (2) 0.33340 (18) 0.41736 (12) 0.0468 (4)
C6 0.6962 (3) 0.2986 (2) 0.51139 (13) 0.0568 (5)
H6 0.6712 0.3676 0.5528 0.068*
C7 0.7053 (3) 0.1694 (2) 0.54338 (13) 0.0595 (5)
H7 0.6882 0.1487 0.6069 0.071*
C8 0.7402 (3) 0.0650 (2) 0.48347 (12) 0.0500 (5)
C9 0.7681 (2) 0.09310 (17) 0.39186 (12) 0.0437 (4)
H9 0.7933 0.0223 0.3518 0.052*
C10 0.7594 (2) 0.22823 (17) 0.35694 (12) 0.0415 (4)
C11 0.8441 (2) 0.15771 (15) 0.19458 (11) 0.0380 (4)
C12 1.0499 (2) 0.07968 (15) 0.18749 (11) 0.0372 (4)
C13 1.1798 (2) 0.09503 (16) 0.24817 (11) 0.0420 (4)
H13 1.1372 0.1520 0.2968 0.050*
C14 1.3706 (2) 0.02737 (16) 0.23747 (11) 0.0432 (4)
H14 1.4597 0.0351 0.2793 0.052*
C15 1.4283 (2) −0.05105 (15) 0.16524 (12) 0.0403 (4)
C16 1.3033 (2) −0.06977 (17) 0.10467 (12) 0.0468 (4)
H16 1.3475 −0.1255 0.0555 0.056*
C17 1.1129 (2) −0.00550 (16) 0.11758 (12) 0.0444 (4)
H17 1.0236 −0.0196 0.0782 0.053*
C18 0.6997 (2) 0.52340 (16) 0.08865 (12) 0.0412 (4)
C19 0.7424 (2) 0.51149 (16) −0.01015 (12) 0.0405 (4)
C20 0.6551 (2) 0.62210 (17) −0.06911 (13) 0.0449 (4)
H20 0.5785 0.7031 −0.0451 0.054*
C21 0.6792 (2) 0.61456 (17) −0.16166 (13) 0.0468 (5)
H21 0.6210 0.6898 −0.2022 0.056*
C22 0.7898 (2) 0.49528 (18) −0.19427 (12) 0.0451 (4)
C23 0.8803 (2) 0.38428 (18) −0.13809 (13) 0.0475 (5)
H23 0.9570 0.3038 −0.1627 0.057*
C24 0.8563 (2) 0.39339 (17) −0.04519 (12) 0.0448 (4)
H24 0.9177 0.3187 −0.0050 0.054*
C25 0.7807 (3) −0.1711 (2) 0.46867 (14) 0.0637 (6)
H25A 0.7773 −0.2542 0.5064 0.076*
H25B 0.9069 −0.1831 0.4383 0.076*
H25C 0.6838 −0.1525 0.4228 0.076*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0423 (7) 0.0422 (7) 0.0595 (8) −0.0068 (6) −0.0133 (6) −0.0083 (6)
O2 0.0433 (7) 0.0352 (6) 0.0505 (7) −0.0052 (5) −0.0038 (5) −0.0019 (5)
O3 0.0694 (9) 0.0699 (9) 0.0509 (8) −0.0263 (7) −0.0071 (7) 0.0083 (7)
O4 0.0444 (8) 0.0506 (8) 0.0703 (9) −0.0003 (6) −0.0121 (7) −0.0036 (6)
O5 0.0492 (8) 0.0476 (7) 0.0659 (9) −0.0096 (6) 0.0103 (7) −0.0117 (6)
O6 0.0436 (7) 0.0381 (7) 0.0632 (8) −0.0028 (6) −0.0013 (6) −0.0088 (6)
O7 0.0857 (11) 0.0800 (11) 0.0672 (10) −0.0038 (9) −0.0163 (8) −0.0293 (8)
O8 0.0850 (11) 0.0858 (11) 0.0592 (9) −0.0083 (9) −0.0114 (8) 0.0088 (8)
N1 0.0425 (9) 0.0341 (8) 0.0600 (10) −0.0082 (6) 0.0006 (8) −0.0052 (7)
N2 0.0486 (10) 0.0684 (11) 0.0592 (11) −0.0123 (9) −0.0103 (8) −0.0101 (9)
C1 0.0298 (9) 0.0371 (9) 0.0473 (10) −0.0061 (7) −0.0052 (7) −0.0066 (7)
C2 0.0346 (9) 0.0393 (9) 0.0489 (10) −0.0053 (7) −0.0041 (8) −0.0060 (8)
C3 0.0452 (11) 0.0389 (9) 0.0642 (13) −0.0061 (8) −0.0076 (9) −0.0110 (9)
C4 0.0468 (11) 0.0499 (11) 0.0606 (12) −0.0070 (9) −0.0056 (9) −0.0201 (9)
C5 0.0356 (10) 0.0528 (11) 0.0512 (11) −0.0068 (8) −0.0050 (8) −0.0136 (9)
C6 0.0481 (12) 0.0726 (14) 0.0499 (12) −0.0116 (10) −0.0045 (9) −0.0192 (10)
C7 0.0546 (12) 0.0812 (15) 0.0444 (11) −0.0202 (11) −0.0055 (9) −0.0062 (10)
C8 0.0419 (10) 0.0619 (12) 0.0476 (11) −0.0170 (9) −0.0075 (8) 0.0016 (9)
C9 0.0359 (9) 0.0471 (10) 0.0474 (10) −0.0090 (8) −0.0056 (8) −0.0044 (8)
C10 0.0301 (9) 0.0464 (10) 0.0474 (10) −0.0072 (7) −0.0059 (7) −0.0071 (8)
C11 0.0381 (9) 0.0345 (8) 0.0422 (9) −0.0109 (7) −0.0078 (8) 0.0011 (7)
C12 0.0389 (9) 0.0312 (8) 0.0406 (9) −0.0081 (7) −0.0048 (7) −0.0011 (7)
C13 0.0379 (10) 0.0419 (9) 0.0453 (10) −0.0071 (8) −0.0027 (7) −0.0087 (8)
C14 0.0394 (10) 0.0422 (9) 0.0481 (11) −0.0091 (8) −0.0085 (8) −0.0056 (8)
C15 0.0357 (9) 0.0307 (8) 0.0516 (10) −0.0049 (7) −0.0012 (8) −0.0014 (7)
C16 0.0460 (11) 0.0414 (10) 0.0502 (11) −0.0044 (8) −0.0004 (8) −0.0133 (8)
C17 0.0422 (10) 0.0423 (9) 0.0481 (10) −0.0068 (8) −0.0097 (8) −0.0089 (8)
C18 0.0361 (9) 0.0309 (8) 0.0582 (11) −0.0109 (7) −0.0063 (8) −0.0021 (8)
C19 0.0351 (9) 0.0337 (9) 0.0539 (11) −0.0102 (7) −0.0041 (8) −0.0053 (8)
C20 0.0400 (10) 0.0338 (9) 0.0597 (12) −0.0070 (7) −0.0057 (8) −0.0042 (8)
C21 0.0402 (10) 0.0423 (10) 0.0576 (12) −0.0104 (8) −0.0098 (8) 0.0016 (8)
C22 0.0377 (10) 0.0490 (10) 0.0500 (11) −0.0123 (8) −0.0063 (8) −0.0062 (8)
C23 0.0409 (10) 0.0419 (10) 0.0596 (12) −0.0079 (8) −0.0043 (8) −0.0112 (8)
C24 0.0398 (10) 0.0364 (9) 0.0566 (11) −0.0070 (7) −0.0071 (8) −0.0018 (8)
C25 0.0671 (14) 0.0584 (13) 0.0665 (14) −0.0216 (11) −0.0093 (11) 0.0094 (10)

Geometric parameters (Å, °)

O1—C11 1.2181 (17) C9—C10 1.420 (2)
O2—C18 1.3654 (19) C9—H9 0.9500
O2—C2 1.407 (2) C11—C12 1.499 (2)
O3—C8 1.362 (2) C12—C17 1.387 (2)
O3—C25 1.425 (2) C12—C13 1.395 (2)
O4—N1 1.2319 (17) C13—C14 1.382 (2)
O5—N1 1.2214 (18) C13—H13 0.9500
O6—C18 1.2016 (19) C14—C15 1.369 (2)
O7—N2 1.224 (2) C14—H14 0.9500
O8—N2 1.222 (2) C15—C16 1.380 (2)
N1—C15 1.474 (2) C16—C17 1.375 (2)
N2—C22 1.475 (2) C16—H16 0.9500
C1—C2 1.374 (2) C17—H17 0.9500
C1—C10 1.419 (2) C18—C19 1.481 (2)
C1—C11 1.502 (2) C19—C24 1.390 (2)
C2—C3 1.401 (2) C19—C20 1.395 (2)
C3—C4 1.360 (3) C20—C21 1.373 (2)
C3—H3 0.9500 C20—H20 0.9500
C4—C5 1.410 (2) C21—C22 1.377 (2)
C4—H4 0.9500 C21—H21 0.9500
C5—C6 1.416 (2) C22—C23 1.381 (2)
C5—C10 1.420 (2) C23—C24 1.380 (2)
C6—C7 1.351 (3) C23—H23 0.9500
C6—H6 0.9500 C24—H24 0.9500
C7—C8 1.410 (3) C25—H25A 0.9800
C7—H7 0.9500 C25—H25B 0.9800
C8—C9 1.371 (2) C25—H25C 0.9800
C18—O2—C2 120.25 (13) C13—C12—C11 121.03 (15)
C8—O3—C25 117.74 (14) C14—C13—C12 120.00 (16)
O5—N1—O4 124.40 (15) C14—C13—H13 120.0
O5—N1—C15 118.15 (15) C12—C13—H13 120.0
O4—N1—C15 117.45 (15) C15—C14—C13 118.59 (15)
O8—N2—O7 123.76 (19) C15—C14—H14 120.7
O8—N2—C22 118.23 (17) C13—C14—H14 120.7
O7—N2—C22 118.01 (17) C14—C15—C16 122.86 (16)
C2—C1—C10 119.72 (15) C14—C15—N1 118.25 (15)
C2—C1—C11 118.15 (15) C16—C15—N1 118.89 (16)
C10—C1—C11 122.03 (14) C17—C16—C15 118.09 (16)
C1—C2—C3 122.62 (17) C17—C16—H16 121.0
C1—C2—O2 114.39 (14) C15—C16—H16 121.0
C3—C2—O2 122.75 (15) C16—C17—C12 120.77 (15)
C4—C3—C2 117.97 (17) C16—C17—H17 119.6
C4—C3—H3 121.0 C12—C17—H17 119.6
C2—C3—H3 121.0 O6—C18—O2 123.46 (17)
C3—C4—C5 122.17 (17) O6—C18—C19 125.18 (15)
C3—C4—H4 118.9 O2—C18—C19 111.34 (15)
C5—C4—H4 118.9 C24—C19—C20 119.88 (17)
C4—C5—C6 122.42 (17) C24—C19—C18 122.59 (15)
C4—C5—C10 119.49 (17) C20—C19—C18 117.44 (15)
C6—C5—C10 118.08 (16) C21—C20—C19 120.39 (16)
C7—C6—C5 121.38 (18) C21—C20—H20 119.8
C7—C6—H6 119.3 C19—C20—H20 119.8
C5—C6—H6 119.3 C20—C21—C22 118.35 (16)
C6—C7—C8 120.66 (18) C20—C21—H21 120.8
C6—C7—H7 119.7 C22—C21—H21 120.8
C8—C7—H7 119.7 C21—C22—C23 122.92 (17)
O3—C8—C9 125.24 (17) C21—C22—N2 118.69 (16)
O3—C8—C7 114.50 (17) C23—C22—N2 118.39 (16)
C9—C8—C7 120.26 (17) C24—C23—C22 118.21 (17)
C8—C9—C10 119.91 (17) C24—C23—H23 120.9
C8—C9—H9 120.0 C22—C23—H23 120.9
C10—C9—H9 120.0 C23—C24—C19 120.22 (16)
C1—C10—C9 122.34 (15) C23—C24—H24 119.9
C1—C10—C5 117.96 (15) C19—C24—H24 119.9
C9—C10—C5 119.70 (16) O3—C25—H25A 109.5
O1—C11—C12 121.01 (15) O3—C25—H25B 109.5
O1—C11—C1 121.49 (14) H25A—C25—H25B 109.5
C12—C11—C1 117.41 (13) O3—C25—H25C 109.5
C17—C12—C13 119.59 (15) H25A—C25—H25C 109.5
C17—C12—C11 119.35 (14) H25B—C25—H25C 109.5
C10—C1—C2—C3 2.9 (2) O1—C11—C12—C13 −177.25 (14)
C11—C1—C2—C3 −173.59 (14) C1—C11—C12—C13 6.3 (2)
C10—C1—C2—O2 177.35 (13) C17—C12—C13—C14 1.1 (2)
C11—C1—C2—O2 0.9 (2) C11—C12—C13—C14 −176.67 (14)
C18—O2—C2—C1 135.88 (14) C12—C13—C14—C15 1.7 (2)
C18—O2—C2—C3 −49.7 (2) C13—C14—C15—C16 −2.6 (2)
C1—C2—C3—C4 −1.5 (3) C13—C14—C15—N1 176.96 (14)
O2—C2—C3—C4 −175.56 (15) O5—N1—C15—C14 −150.67 (15)
C2—C3—C4—C5 −0.9 (3) O4—N1—C15—C14 28.6 (2)
C3—C4—C5—C6 −179.22 (16) O5—N1—C15—C16 28.9 (2)
C3—C4—C5—C10 1.8 (3) O4—N1—C15—C16 −151.83 (15)
C4—C5—C6—C7 −178.77 (17) C14—C15—C16—C17 0.6 (3)
C10—C5—C6—C7 0.2 (3) N1—C15—C16—C17 −179.02 (14)
C5—C6—C7—C8 −0.7 (3) C15—C16—C17—C12 2.4 (3)
C25—O3—C8—C9 0.9 (3) C13—C12—C17—C16 −3.2 (2)
C25—O3—C8—C7 −178.95 (16) C11—C12—C17—C16 174.59 (14)
C6—C7—C8—O3 −179.10 (17) C2—O2—C18—O6 9.5 (2)
C6—C7—C8—C9 1.0 (3) C2—O2—C18—C19 −168.93 (12)
O3—C8—C9—C10 179.26 (16) O6—C18—C19—C24 −166.57 (15)
C7—C8—C9—C10 −0.9 (3) O2—C18—C19—C24 11.9 (2)
C2—C1—C10—C9 178.82 (14) O6—C18—C19—C20 10.0 (2)
C11—C1—C10—C9 −4.9 (2) O2—C18—C19—C20 −171.59 (13)
C2—C1—C10—C5 −1.8 (2) C24—C19—C20—C21 0.7 (2)
C11—C1—C10—C5 174.53 (13) C18—C19—C20—C21 −175.95 (14)
C8—C9—C10—C1 179.79 (14) C19—C20—C21—C22 0.5 (2)
C8—C9—C10—C5 0.4 (2) C20—C21—C22—C23 −1.3 (3)
C4—C5—C10—C1 −0.5 (2) C20—C21—C22—N2 178.58 (14)
C6—C5—C10—C1 −179.47 (14) O8—N2—C22—C21 6.3 (2)
C4—C5—C10—C9 178.94 (15) O7—N2—C22—C21 −173.67 (15)
C6—C5—C10—C9 −0.1 (2) O8—N2—C22—C23 −173.82 (16)
C2—C1—C11—O1 −79.86 (19) O7—N2—C22—C23 6.2 (2)
C10—C1—C11—O1 103.77 (18) C21—C22—C23—C24 0.8 (3)
C2—C1—C11—C12 96.63 (17) N2—C22—C23—C24 −179.08 (15)
C10—C1—C11—C12 −79.75 (18) C22—C23—C24—C19 0.5 (2)
O1—C11—C12—C17 5.0 (2) C20—C19—C24—C23 −1.2 (2)
C1—C11—C12—C17 −171.52 (14) C18—C19—C24—C23 175.27 (14)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C6—H6···O7i 0.95 2.58 3.211 (3) 124
C23—H23···O4ii 0.95 2.55 3.435 (2) 154

Symmetry codes: (i) x, y, z+1; (ii) −x+3, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2749).

References

  1. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.
  2. Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  3. Higashi, T. (1999). NUMABS Rigaku Corporation, Tokyo, Japan.
  4. Mitsui, R., Nakaema, K., Noguchi, K., Okamoto, A. & Yonezawa, N. (2008). Acta Cryst. E64, o1278. [DOI] [PMC free article] [PubMed]
  5. Mitsui, R., Nakaema, K., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o2497. [DOI] [PMC free article] [PubMed]
  6. Mitsui, R., Noguchi, K. & Yonezawa, N. (2009). Acta Cryst. E65, o543. [DOI] [PMC free article] [PubMed]
  7. Muto, T., Kato, Y., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2752. [DOI] [PMC free article] [PubMed]
  8. Nagasawa, A., Mitsui, R., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2820–o2821. [DOI] [PMC free article] [PubMed]
  9. Okamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914–915.
  10. Rigaku (1998). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  11. Rigaku/MSC (2004). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Watanabe, S., Nakaema, K., Nishijima, T., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o615. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811027619/is2749sup1.cif

e-67-o2040-sup1.cif (22.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811027619/is2749Isup2.hkl

e-67-o2040-Isup2.hkl (183.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811027619/is2749Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES