Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jul 16;67(Pt 8):o2041–o2042. doi: 10.1107/S1600536811027656

N,N-Bis(diphenyl­phosphan­yl)cyclo­butanamine

Ilana Engelbrecht a,*, Hendrik G Visser a, Andreas Roodt a
PMCID: PMC3213490  PMID: 22091069

Abstract

In the title compound, C28H27NP2, the N atom adopts an almost planar geometry with the two P atoms and the C atom attached to it, with a distance of 0.066 (2) Å between the N atom and the C/P/P plane. The distorted trigonal–pyramidal geometry of the N atom is further illustrated by bond angles ranging between 115.22 (11) and 123.53 (8)°. Bond angles varying from 99.99 (9) to 108.07 (9) ° are indicative of the distorted pyramidal environment around the P atoms. An intra­molecular C—H⋯P hydrogen bond occurs. In the crystal, inter­molecular C—H⋯π inter­actions link the mol­ecules into a supra­molecular network.

Related literature

For similar structures, see: Keat et al. (1981); Cotton et al. (1996); Fei et al. (2003); Cloete et al. (2008, 2009, 2010); Engelbrecht et al. (2010a ,b ). For diphosphinoamine (PNP) and other P-donor ligands, see: Muller et al. (2008); Purcell et al. (1995); Otto & Roodt (2001); Otto et al. (2005). For their use in catalytic olefin transformation reactions, see: Haumann et al. (2004); Crous et al. (2005); Booyens et al. (2007); Cloete et al. (2011); Ferreira et al. (2007). graphic file with name e-67-o2041-scheme1.jpg

Experimental

Crystal data

  • C28H27NP2

  • M r = 439.45

  • Monoclinic, Inline graphic

  • a = 9.414 (5) Å

  • b = 9.664 (5) Å

  • c = 12.644 (4) Å

  • β = 94.245 (5)°

  • V = 1147.2 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 100 K

  • 0.32 × 0.12 × 0.04 mm

Data collection

  • Bruker X8 APEXII 4K KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004) T min = 0.937, T max = 0.992

  • 20748 measured reflections

  • 3035 independent reflections

  • 2930 reflections with I > 2σ(I)

  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.024

  • wR(F 2) = 0.064

  • S = 1.04

  • 3035 reflections

  • 281 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811027656/go2019sup1.cif

e-67-o2041-sup1.cif (22.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811027656/go2019Isup2.hkl

e-67-o2041-Isup2.hkl (145.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C11–C16 and C21–C26 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C32—H32⋯P1 0.95 2.8 3.452 (2) 127
C43—H43⋯Cg1i 0.95 2.87 3.686 (7) 144
C44—H44⋯Cg2ii 0.95 2.81 3.614 (6) 143

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

Financial assistance from the Department of Science and Technology (DST) of South Africa, the South African National Research Foundation (NRF), the DST–NRF centre of excellence (c*change), the University of the Free State and the INKABA funding project are gratefully acknowledged.

supplementary crystallographic information

Comment

Diphosphinoamine (PNP) and other P donor ligands (Muller et al., 2008; Purcell et al., 1995; Otto et al., 2005; Otto & Roodt, 2001) with various substituents on both the P and N atoms form part of ongoing research in different catalytic olefin transformation reactions such as hydroformylation (Haumann et al., 2004; Crous et al., 2005), metathesis (Booyens et al.) methoxycarbonylation (Ferreira et al., 2007) and tetramerization (Cloete et al., 2011). In the title compound, C29H29NP2, Fig.1, all bond distances and angles fall within the range for similar complexes (Keat et al., 1981; Cotton et al., 1996; Fei et al., 2003; Cloete et al., 2008, 2009, 2010; Engelbrecht et al., 2010a, 2010b).

The N(P2C) group is almost planar, with the central N displaced by -0.066 (2) Å from the P1—P2—C1 plane. The distorted trigonal-pyramidal geometry around the N atom is evident by the bond angles ranging between 115.22 (11) and 123.53 (8) °. The distorted triangular pyramidal geometry around the phosphorous atoms is indicated by C—P—C angles varying from 99.99 (9) - 108.07 (9) ° and N—P—C angles from 102.24 (8) - 108.07 (9) °. The phosphorous lone pairs are trans with respect to the N—C bond, therefore the title compound has a Cs conformer in the solid state. The crystal packing is stabilized by a C—H···P intramolecular hydrogen bond (Table 1) and intermolecular C—H···π interactions resulting in a three-dimensional network (Table 1, Figure 2).

Experimental

Cyclobutylamine (0.010 mol, 854 µl) was dissolved in dichloromethane (30 ml) after which the solution was placed on an ice bath. Triethylamine (0.030 mol, 4.21 ml) was added to the solution while stirring. Chlorodiphenylphosphine (0.020 mol, 3.70 ml) was slowly added to the reaction mixture. The ice bath was removed after 1 h and the reaction mixture was allowed to stir at room temperature for a further 12 h. The dichloromethane was removed under reduced pressure. A mixture of hexane (20 ml) and toluene (2 ml) was added to the remaining white powder and was passed through a column containing neutral activated alumina (35 g). The solvent of the eluent was removed under reduced pressure and the white precipitate was collected. Single colourless crystals suitable for X-ray crystallography were obtained from recrystallization from methanol. (yield: 2.100 g, 48%)

Refinement

The methine, methylene and aromatic H atoms were placed in geometrically idealized positions at C—H = 1.00, 0.99 and 0.95 Å, respectively and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C). The highest peak is located 0.77 Å from C1 and the deepest hole is situated 0.55 Å from P1. In the absence of significant anomalous scattering effects, Friedel pairs have been merged.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

The crystal packing of the title compound, viewed along the a axis forming the three-dimensional framework. C—H···π interactions are shown as dashed lines. Displacement ellipsoids are drawn at the 50% probability level.

Crystal data

C28H27NP2 F(000) = 464
Mr = 439.45 Dx = 1.272 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2yb Cell parameters from 9952 reflections
a = 9.414 (5) Å θ = 2.7–28.3°
b = 9.664 (5) Å µ = 0.21 mm1
c = 12.644 (4) Å T = 100 K
β = 94.245 (5)° Cuboid, colourless
V = 1147.2 (10) Å3 0.32 × 0.12 × 0.04 mm
Z = 2

Data collection

Bruker X8 APEXII 4K KappaCCD diffractometer 3035 independent reflections
Radiation source: fine-focus sealed tube 2930 reflections with I > 2σ(I)
graphite Rint = 0.027
ω and φ scans θmax = 28.4°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2004) h = −12→12
Tmin = 0.937, Tmax = 0.992 k = −12→12
20748 measured reflections l = −16→16

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.064 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0386P)2 + 0.1935P] where P = (Fo2 + 2Fc2)/3
3035 reflections (Δ/σ)max = 0.001
281 parameters Δρmax = 0.25 e Å3
1 restraint Δρmin = −0.18 e Å3

Special details

Experimental. The intensity data were collected on a Bruker X8 ApexII 4 K Kappa CCD diffractometer using an exposure time of 40 s/frame. A total of 1709 frames were collected with a frame width of 0.5° covering up to θ = 28.39° with 99.9% completeness accomplished.
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.63564 (17) 0.73665 (19) 0.12318 (13) 0.0161 (3)
H1 0.7182 0.7791 0.1657 0.019*
C2 0.6829 (2) 0.5945 (2) 0.08102 (15) 0.0227 (4)
H2A 0.7631 0.5515 0.1244 0.027*
H2B 0.6039 0.528 0.0666 0.027*
C3 0.72812 (19) 0.6710 (2) −0.01884 (14) 0.0243 (4)
H3A 0.8308 0.694 −0.016 0.029*
H3B 0.697 0.6245 −0.0864 0.029*
C4 0.63230 (18) 0.7937 (2) 0.00897 (13) 0.0202 (3)
H4A 0.6781 0.8854 0.0035 0.024*
H4B 0.5366 0.7926 −0.0291 0.024*
C11 0.61059 (17) 0.96900 (19) 0.30492 (14) 0.0170 (3)
C12 0.59621 (18) 1.04878 (19) 0.21255 (13) 0.0185 (3)
H12 0.5452 1.0127 0.151 0.022*
C13 0.65569 (17) 1.1803 (2) 0.20966 (14) 0.0207 (3)
H13 0.6468 1.2325 0.1458 0.025*
C14 0.72805 (19) 1.2358 (2) 0.29965 (16) 0.0238 (4)
H14 0.7687 1.3257 0.2977 0.029*
C15 0.7403 (2) 1.1586 (2) 0.39223 (15) 0.0259 (4)
H15 0.7887 1.1963 0.4542 0.031*
C16 0.68275 (19) 1.0269 (2) 0.39524 (14) 0.0223 (4)
H16 0.6923 0.9752 0.4593 0.027*
C21 0.67262 (18) 0.69892 (19) 0.37827 (13) 0.0177 (3)
C22 0.81721 (19) 0.7224 (2) 0.36534 (13) 0.0204 (3)
H22 0.845 0.7973 0.3228 0.024*
C23 0.9200 (2) 0.6362 (2) 0.41469 (14) 0.0249 (4)
H23 1.0179 0.6522 0.4053 0.03*
C24 0.8808 (2) 0.5268 (2) 0.47773 (14) 0.0283 (4)
H24 0.9515 0.4673 0.5103 0.034*
C25 0.7388 (2) 0.5049 (2) 0.49284 (14) 0.0270 (4)
H25 0.7118 0.431 0.5366 0.032*
C26 0.6354 (2) 0.5909 (2) 0.44406 (14) 0.0216 (4)
H26 0.5381 0.5759 0.4556 0.026*
C31 0.21248 (16) 0.8079 (2) 0.13397 (12) 0.0165 (3)
C32 0.17680 (19) 0.8748 (2) 0.22612 (14) 0.0227 (4)
H32 0.232 0.8584 0.2909 0.027*
C33 0.0619 (2) 0.9650 (2) 0.22457 (16) 0.0249 (4)
H33 0.0406 1.0117 0.2876 0.03*
C34 −0.02202 (19) 0.9870 (2) 0.13090 (16) 0.0241 (4)
H34 −0.1016 1.0474 0.13 0.029*
C35 0.0110 (2) 0.9203 (2) 0.03906 (15) 0.0251 (4)
H35 −0.0464 0.9348 −0.025 0.03*
C36 0.12781 (18) 0.8322 (2) 0.04019 (13) 0.0206 (4)
H36 0.1504 0.7879 −0.0235 0.025*
C41 0.30058 (17) 0.54508 (18) 0.21428 (12) 0.0156 (3)
C42 0.40188 (18) 0.45205 (19) 0.25833 (14) 0.0188 (3)
H42 0.4998 0.467 0.2484 0.023*
C43 0.3623 (2) 0.33809 (19) 0.31634 (14) 0.0219 (4)
H43 0.4331 0.2773 0.3472 0.026*
C44 0.2191 (2) 0.3130 (2) 0.32932 (14) 0.0244 (4)
H44 0.1914 0.2351 0.3687 0.029*
C45 0.11719 (19) 0.4034 (2) 0.28400 (15) 0.0250 (4)
H45 0.0191 0.3861 0.2915 0.03*
C46 0.15723 (19) 0.5188 (2) 0.22774 (14) 0.0208 (3)
H46 0.0864 0.5804 0.1982 0.025*
N1 0.50881 (15) 0.74590 (16) 0.18514 (11) 0.0153 (3)
P1 0.52394 (4) 0.79965 (6) 0.31465 (3) 0.01550 (9)
P2 0.35464 (4) 0.67934 (6) 0.12377 (3) 0.01489 (9)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0156 (7) 0.0166 (7) 0.0163 (7) 0.0007 (6) 0.0022 (6) −0.0001 (6)
C2 0.0231 (9) 0.0179 (8) 0.0279 (9) 0.0032 (7) 0.0082 (7) −0.0003 (7)
C3 0.0249 (9) 0.0246 (9) 0.0245 (8) −0.0014 (8) 0.0089 (7) −0.0050 (8)
C4 0.0210 (8) 0.0228 (8) 0.0173 (7) 0.0008 (7) 0.0048 (6) 0.0025 (7)
C11 0.0123 (7) 0.0168 (8) 0.0217 (8) 0.0012 (6) 0.0006 (6) −0.0022 (6)
C12 0.0183 (8) 0.0190 (8) 0.0181 (8) 0.0025 (6) 0.0006 (6) −0.0033 (6)
C13 0.0183 (8) 0.0195 (8) 0.0247 (8) 0.0016 (7) 0.0034 (6) 0.0009 (7)
C14 0.0177 (8) 0.0173 (8) 0.0362 (10) −0.0002 (7) 0.0007 (7) −0.0030 (7)
C15 0.0217 (9) 0.0242 (10) 0.0301 (9) 0.0021 (7) −0.0095 (7) −0.0062 (8)
C16 0.0239 (9) 0.0222 (9) 0.0200 (8) 0.0037 (7) −0.0037 (7) −0.0016 (7)
C21 0.0202 (8) 0.0185 (8) 0.0142 (7) 0.0002 (7) −0.0006 (6) −0.0007 (6)
C22 0.0218 (8) 0.0218 (9) 0.0173 (8) 0.0007 (7) −0.0007 (6) −0.0004 (6)
C23 0.0221 (9) 0.0314 (10) 0.0206 (8) 0.0062 (7) −0.0020 (7) −0.0047 (7)
C24 0.0395 (11) 0.0248 (10) 0.0194 (8) 0.0130 (9) −0.0074 (8) −0.0038 (7)
C25 0.0448 (12) 0.0197 (9) 0.0156 (8) 0.0007 (8) −0.0026 (7) 0.0019 (7)
C26 0.0278 (9) 0.0201 (8) 0.0166 (8) −0.0038 (7) −0.0006 (7) −0.0003 (7)
C31 0.0139 (7) 0.0158 (7) 0.0197 (7) −0.0015 (6) 0.0009 (6) 0.0011 (7)
C32 0.0213 (8) 0.0258 (9) 0.0206 (8) 0.0038 (7) −0.0018 (7) −0.0017 (7)
C33 0.0232 (9) 0.0237 (9) 0.0282 (9) 0.0033 (7) 0.0049 (7) −0.0031 (7)
C34 0.0164 (8) 0.0206 (9) 0.0356 (10) 0.0017 (7) 0.0039 (7) 0.0055 (8)
C35 0.0207 (8) 0.0276 (10) 0.0262 (9) −0.0003 (7) −0.0038 (7) 0.0071 (8)
C36 0.0192 (8) 0.0239 (9) 0.0186 (8) −0.0018 (6) 0.0001 (6) 0.0006 (6)
C41 0.0180 (8) 0.0145 (7) 0.0144 (7) −0.0018 (6) 0.0017 (6) −0.0027 (6)
C42 0.0164 (8) 0.0185 (8) 0.0216 (8) 0.0000 (6) 0.0025 (6) −0.0016 (6)
C43 0.0242 (9) 0.0194 (9) 0.0223 (8) 0.0017 (7) 0.0026 (7) 0.0018 (7)
C44 0.0297 (9) 0.0185 (8) 0.0257 (8) −0.0056 (8) 0.0074 (7) 0.0011 (7)
C45 0.0187 (8) 0.0247 (9) 0.0323 (10) −0.0052 (7) 0.0073 (7) −0.0018 (8)
C46 0.0181 (8) 0.0212 (8) 0.0231 (8) −0.0006 (7) 0.0010 (6) −0.0014 (7)
N1 0.0135 (6) 0.0178 (7) 0.0146 (6) −0.0015 (5) 0.0012 (5) −0.0021 (5)
P1 0.01451 (19) 0.0175 (2) 0.01444 (18) −0.00069 (16) 0.00074 (14) −0.00094 (16)
P2 0.01521 (19) 0.01517 (18) 0.01420 (18) −0.00057 (16) 0.00048 (13) −0.00147 (16)

Geometric parameters (Å, °)

C1—N1 1.478 (2) C24—C25 1.380 (3)
C1—C4 1.544 (2) C24—H24 0.95
C1—C2 1.551 (2) C25—C26 1.389 (3)
C1—H1 1 C25—H25 0.95
C2—C3 1.550 (3) C26—H26 0.95
C2—H2A 0.99 C31—C32 1.395 (2)
C2—H2B 0.99 C31—C36 1.399 (2)
C3—C4 1.546 (3) C31—P2 1.838 (2)
C3—H3A 0.99 C32—C33 1.388 (3)
C3—H3B 0.99 C32—H32 0.95
C4—H4A 0.99 C33—C34 1.390 (3)
C4—H4B 0.99 C33—H33 0.95
C11—C12 1.398 (2) C34—C35 1.383 (3)
C11—C16 1.401 (2) C34—H34 0.95
C11—P1 1.837 (2) C35—C36 1.390 (3)
C12—C13 1.391 (3) C35—H35 0.95
C12—H12 0.95 C36—H36 0.95
C13—C14 1.390 (3) C41—C46 1.396 (2)
C13—H13 0.95 C41—C42 1.396 (2)
C14—C15 1.386 (3) C41—P2 1.8271 (19)
C14—H14 0.95 C42—C43 1.389 (2)
C15—C16 1.384 (3) C42—H42 0.95
C15—H15 0.95 C43—C44 1.391 (3)
C16—H16 0.95 C43—H43 0.95
C21—C26 1.396 (2) C44—C45 1.389 (3)
C21—C22 1.401 (3) C44—H44 0.95
C21—P1 1.8404 (19) C45—C46 1.390 (3)
C22—C23 1.389 (3) C45—H45 0.95
C22—H22 0.95 C46—H46 0.95
C23—C24 1.390 (3) N1—P1 1.7138 (15)
C23—H23 0.95 N1—P2 1.7192 (16)
N1—C1—C4 120.84 (14) C23—C24—H24 120.1
N1—C1—C2 119.96 (14) C24—C25—C26 120.05 (18)
C4—C1—C2 88.95 (13) C24—C25—H25 120
N1—C1—H1 108.5 C26—C25—H25 120
C4—C1—H1 108.5 C25—C26—C21 120.91 (18)
C2—C1—H1 108.5 C25—C26—H26 119.5
C3—C2—C1 87.72 (14) C21—C26—H26 119.5
C3—C2—H2A 114 C32—C31—C36 118.23 (16)
C1—C2—H2A 114 C32—C31—P2 126.41 (13)
C3—C2—H2B 114 C36—C31—P2 115.22 (13)
C1—C2—H2B 114 C33—C32—C31 120.98 (17)
H2A—C2—H2B 111.2 C33—C32—H32 119.5
C4—C3—C2 88.91 (13) C31—C32—H32 119.5
C4—C3—H3A 113.8 C32—C33—C34 120.06 (18)
C2—C3—H3A 113.8 C32—C33—H33 120
C4—C3—H3B 113.8 C34—C33—H33 120
C2—C3—H3B 113.8 C35—C34—C33 119.69 (17)
H3A—C3—H3B 111.1 C35—C34—H34 120.2
C1—C4—C3 88.10 (13) C33—C34—H34 120.2
C1—C4—H4A 114 C34—C35—C36 120.21 (17)
C3—C4—H4A 114 C34—C35—H35 119.9
C1—C4—H4B 114 C36—C35—H35 119.9
C3—C4—H4B 114 C35—C36—C31 120.80 (17)
H4A—C4—H4B 111.2 C35—C36—H36 119.6
C12—C11—C16 118.15 (17) C31—C36—H36 119.6
C12—C11—P1 122.11 (13) C46—C41—C42 118.17 (16)
C16—C11—P1 119.48 (14) C46—C41—P2 121.48 (13)
C13—C12—C11 120.80 (16) C42—C41—P2 119.57 (13)
C13—C12—H12 119.6 C43—C42—C41 121.28 (16)
C11—C12—H12 119.6 C43—C42—H42 119.4
C14—C13—C12 120.33 (17) C41—C42—H42 119.4
C14—C13—H13 119.8 C42—C43—C44 120.01 (17)
C12—C13—H13 119.8 C42—C43—H43 120
C15—C14—C13 119.28 (18) C44—C43—H43 120
C15—C14—H14 120.4 C45—C44—C43 119.19 (17)
C13—C14—H14 120.4 C45—C44—H44 120.4
C16—C15—C14 120.65 (17) C43—C44—H44 120.4
C16—C15—H15 119.7 C44—C45—C46 120.68 (17)
C14—C15—H15 119.7 C44—C45—H45 119.7
C15—C16—C11 120.78 (18) C46—C45—H45 119.7
C15—C16—H16 119.6 C45—C46—C41 120.65 (17)
C11—C16—H16 119.6 C45—C46—H46 119.7
C26—C21—C22 118.63 (16) C41—C46—H46 119.7
C26—C21—P1 116.11 (14) C1—N1—P1 120.76 (11)
C22—C21—P1 125.26 (13) C1—N1—P2 115.22 (11)
C23—C22—C21 120.07 (17) P1—N1—P2 123.53 (8)
C23—C22—H22 120 N1—P1—C11 102.24 (8)
C21—C22—H22 120 N1—P1—C21 105.31 (8)
C22—C23—C24 120.50 (18) C11—P1—C21 99.99 (9)
C22—C23—H23 119.7 N1—P2—C41 104.36 (7)
C24—C23—H23 119.8 N1—P2—C31 108.07 (9)
C25—C24—C23 119.79 (17) C41—P2—C31 101.44 (8)
C25—C24—H24 120.1
N1—C1—C2—C3 144.39 (15) C42—C43—C44—C45 −0.2 (3)
C4—C1—C2—C3 18.85 (13) C43—C44—C45—C46 −1.0 (3)
C1—C2—C3—C4 −18.83 (13) C44—C45—C46—C41 1.0 (3)
N1—C1—C4—C3 −143.70 (15) C42—C41—C46—C45 0.3 (3)
C2—C1—C4—C3 −18.90 (13) P2—C41—C46—C45 170.16 (14)
C2—C3—C4—C1 18.91 (14) C4—C1—N1—P1 −134.56 (15)
C16—C11—C12—C13 1.9 (2) C2—C1—N1—P1 116.81 (15)
P1—C11—C12—C13 175.95 (13) C4—C1—N1—P2 53.23 (19)
C11—C12—C13—C14 −1.4 (2) C2—C1—N1—P2 −55.39 (19)
C12—C13—C14—C15 0.0 (3) C1—N1—P1—C11 55.96 (14)
C13—C14—C15—C16 0.7 (3) P2—N1—P1—C11 −132.50 (11)
C14—C15—C16—C11 −0.1 (3) C1—N1—P1—C21 −48.12 (15)
C12—C11—C16—C15 −1.2 (3) P2—N1—P1—C21 123.42 (11)
P1—C11—C16—C15 −175.36 (14) C12—C11—P1—N1 26.64 (15)
C26—C21—C22—C23 2.1 (3) C16—C11—P1—N1 −159.40 (14)
P1—C21—C22—C23 −177.74 (14) C12—C11—P1—C21 134.85 (14)
C21—C22—C23—C24 −0.4 (3) C16—C11—P1—C21 −51.19 (15)
C22—C23—C24—C25 −1.0 (3) C26—C21—P1—N1 −104.69 (14)
C23—C24—C25—C26 0.8 (3) C22—C21—P1—N1 75.13 (17)
C24—C25—C26—C21 0.9 (3) C26—C21—P1—C11 149.56 (13)
C22—C21—C26—C25 −2.3 (3) C22—C21—P1—C11 −30.62 (17)
P1—C21—C26—C25 177.53 (14) C1—N1—P2—C41 121.40 (12)
C36—C31—C32—C33 −1.1 (3) P1—N1—P2—C41 −50.57 (14)
P2—C31—C32—C33 −176.59 (15) C1—N1—P2—C31 −131.22 (12)
C31—C32—C33—C34 1.8 (3) P1—N1—P2—C31 56.81 (13)
C32—C33—C34—C35 −1.0 (3) C46—C41—P2—N1 144.79 (14)
C33—C34—C35—C36 −0.3 (3) C42—C41—P2—N1 −45.52 (15)
C34—C35—C36—C31 0.9 (3) C46—C41—P2—C31 32.56 (16)
C32—C31—C36—C35 −0.2 (3) C42—C41—P2—C31 −157.75 (13)
P2—C31—C36—C35 175.78 (14) C32—C31—P2—N1 −50.48 (18)
C46—C41—C42—C43 −1.6 (2) C36—C31—P2—N1 133.95 (13)
P2—C41—C42—C43 −171.62 (13) C32—C31—P2—C41 58.92 (17)
C41—C42—C43—C44 1.6 (3) C36—C31—P2—C41 −116.66 (14)

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C11–C16 and C21–C26 rings, respectively.
D—H···A D—H H···A D···A D—H···A
C32—H32···P1 0.95 2.8 3.452 (2) 127.
C43—H43···Cg1i 0.95 2.87 3.686 (7) 144
C44—H44···Cg2ii 0.95 2.81 3.614 (6) 143.

Symmetry codes: (i) x, y−1, z; (ii) −x+1, y−1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GO2019).

References

  1. Booyens, S., Roodt, A. & Wendt, O. F. (2007). J. Organomet. Chem. 692, 5508–5512.
  2. Brandenburg, K. & Putz, H. (2005). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Bruker (2004). SAINT-Plus and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Bruker (2010). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Cloete, N., Visser, H. G. & Roodt, A. (2010). Acta Cryst. E66, m51–m52. [DOI] [PMC free article] [PubMed]
  6. Cloete, N., Visser, H. G., Roodt, A., Dixon, J. T. & Blann, K. (2008). Acta Cryst. E64, o480. [DOI] [PMC free article] [PubMed]
  7. Cloete, N., Visser, H. G., Roodt, A., Engelbrecht, I., Overett, M. J. & Gabrielli, W. F. (2011). Angew. Chem. Int. Ed In preparation.
  8. Cloete, N., Visser, H. G., Roodt, A. & Gabrielli, W. F. (2009). Acta Cryst. E65, o3081. [DOI] [PMC free article] [PubMed]
  9. Cotton, F. A., Kuhn, F. E. & Yokochi, A. (1996). Inorg. Chim. Acta, 252, 251–256.
  10. Crous, R., Datt, M., Foster, D., Bennie, L., Steenkamp, C., Huyser, J., Kirsten, L., Steyl, G. & Roodt, A. (2005). Dalton Trans. pp. 1108–1116. [DOI] [PubMed]
  11. Engelbrecht, I., Visser, H. G. & Roodt, A. (2010a). Acta Cryst. E66, o2881. [DOI] [PMC free article] [PubMed]
  12. Engelbrecht, I., Visser, H. G. & Roodt, A. (2010b). Acta Cryst. E66, o3322–o3323. [DOI] [PMC free article] [PubMed]
  13. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  14. Fei, Z., Scopeleti, R. & Dyson, P. J. (2003). Dalton Trans. pp. 2772–2779.
  15. Ferreira, A. C., Crous, R., Bennie, L., Meij, A. M. M., Blann, K., Bezuidenhoudt, B. C. B., Young, D. A., Green, M. J. & Roodt, A. (2007). Angew. Chem. Int. Ed. 46, 2273–2275. [DOI] [PubMed]
  16. Haumann, M., Meijboom, R., Moss, J. R. & Roodt, A. (2004). Dalton Trans. pp. 1679–1686. [DOI] [PubMed]
  17. Keat, R., Manojlovic-Muir, L., Muir, K. W. & Rycroft, D. S. (1981). J. Chem. Soc. Dalton Trans. pp. 2192–2198.
  18. Muller, A., Otto, S. & Roodt, A. (2008). Dalton Trans. pp. 650–657. [DOI] [PubMed]
  19. Otto, S., Ionescu, A. & Roodt, A. (2005). J. Organomet. Chem. 690, 4337–4342.
  20. Otto, S. & Roodt, A. (2001). Inorg. Chem. Commun. 4, 49–52.
  21. Purcell, W., Basson, S. S., Leipoldt, J. G., Roodt, A. & Preston, H. (1995). Inorg. Chim. Acta, 234, 153–156.
  22. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811027656/go2019sup1.cif

e-67-o2041-sup1.cif (22.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811027656/go2019Isup2.hkl

e-67-o2041-Isup2.hkl (145.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES