Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jul 16;67(Pt 8):o2046. doi: 10.1107/S1600536811027681

N,N′-Bis(2-chloro­benz­yl)-N′′-(2,2,2-trichloro­acet­yl)phospho­ric triamide

Mehrdad Pourayoubi a,*, Hassan Fadaei a, Masood Parvez b
PMCID: PMC3213494  PMID: 22091073

Abstract

The P atom in the title compound, C16H15Cl5N3O2P, exhibits a tetra­hedral coordination geometry and the phosphoryl and carbonyl groups are anti with respect to one another. The dihedral angle between the benzene rings is 44.90 (15)°. One of the 2-chloro­benzyl­amido fragments is disordered over two sets of sites with occupancies of 0.8823 (17) and 0.1177 (17). In the crystal, adjacent mol­ecules are linked via N—H⋯O(P) and N—H⋯O(C) hydrogen bonds into an extended chain running parallel to the a axis.

Related literature

For details of compounds having a C(O)NHP(O) skeleton, see: Toghraee et al. (2011). For bond lengths in related structures, see: Pourayoubi et al. (2011); Rudd et al. (1996).graphic file with name e-67-o2046-scheme1.jpg

Experimental

Crystal data

  • C16H15Cl5N3O2P

  • M r = 489.53

  • Triclinic, Inline graphic

  • a = 9.9789 (2) Å

  • b = 10.6058 (3) Å

  • c = 10.8386 (3) Å

  • α = 75.8920 (13)°

  • β = 72.2250 (15)°

  • γ = 69.6050 (15)°

  • V = 1011.66 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.81 mm−1

  • T = 173 K

  • 0.18 × 0.14 × 0.12 mm

Data collection

  • Nonius KappaCCD diffractometer with APEXII CCD detector

  • Absorption correction: multi-scan (SORTAV; Blessing, 1997) T min = 0.867, T max = 0.909

  • 8947 measured reflections

  • 4638 independent reflections

  • 4083 reflections with I > 2σ(I)

  • R int = 0.020

Refinement

  • R[F 2 > 2σ(F 2)] = 0.053

  • wR(F 2) = 0.129

  • S = 1.05

  • 4638 reflections

  • 245 parameters

  • H-atom parameters constrained

  • Δρmax = 1.42 e Å−3

  • Δρmin = −0.68 e Å−3

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: enCIFer (Allen et al., 2004).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811027681/sj5176sup1.cif

e-67-o2046-sup1.cif (23.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811027681/sj5176Isup2.hkl

e-67-o2046-Isup2.hkl (222.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.88 1.94 2.804 (3) 168
N2—H2⋯O1ii 0.88 2.38 3.106 (3) 141
N2′—H2′⋯O1 0.88 2.42 3.025 (3) 126
N3—H3⋯O1ii 0.88 2.34 3.129 (3) 149

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

Support of this investigation by Ferdowsi University of Mashhad is gratefully acknowledged.

supplementary crystallographic information

Comment

The structure determination of the title compound, P(O)[NHC(O)CCl3][NHCH2C6H4(2-Cl)]2 (Fig. 1), was performed as a part of a project in our laboratory on the synthesis of new phosphoramidate compounds having a C(O)NHP(O) skeleton (Toghraee et al., 2011). Single crystals of the title compound were obtained from a solution of CH3OH after slow evaporation at room temperature.

The P═O (1.472 (2) Å) and C═O (1.212 (3) Å) bond lengths are standard for this category of compounds (Pourayoubi et al., 2011). The P atom has a distorted tetrahedral configuration (Fig. 1) as has been noted for other phosphoric triamides and their chalco-derivatives (Rudd et al., 1996). The bond angles at the P atom vary in the range 103.26 (13)- 116.10 (12)°. The P—N2 and P—N3 bonds (with lengths of 1.621 (2) Å and 1.622 (2) Å) are shorter than the P—N1 bond (1.715 (2) Å). As can be expected the C1—N1 bond distance (1.339 (3) Å) is shorter than the other C—N bond distances. The N—H unit of C(O)NHP(O) moiety and the phosphoryl group have a syn orientation with respect to each other. One of the 2-chlorobenzylamido fragments is disordered over two sites with occupancies of 0.8823 (17) and 0.1177 (17).

In the crystal, each molecule is hydrogen-bonded to two adjacent molecules through NC(O)NHP(O)—H···O(P) and N—H···O(C) hydrogen bonds forming linear chains parallel to [100] (Table 1).

Experimental

The reaction of phosphorus pentachloride (35.6 mmol) and 2,2,2-trichloroacetamide (35.6 mmol) in dry CCl4 (25 ml) at 353 K (3 h) and then treatment with formic acid 85% (35.6 mmol) at 271 K leads to the formation of CCl3C(O)NHP(O)Cl2 as a white solid.

To a solution of CCl3C(O)NHP(O)Cl2 (2.5 mmol) in dry CHCl3 (30 ml), a solution of 2-chlorobenzylamine (10 mmol) in dry CHCl3 (10 ml) was added dropwise at 271 K. After 4 h stirring, the solvent was evaporated at room temperature. The solid was washed with distilled water and recrystallized from CH3OH.

Refinement

The H-atoms were included at geometrically idealized positions with distances N—H = 0.88 Å and C—H = 0.95 and 0.99 Å for aryl and methylene type H-atoms, respectively. The chlorobenzyl group attached to N2 was disordered with its atoms located over two sites with site occupancy factors 0.8823 (17) and 0.1177 (17). The H-atoms were assigned Uiso = 1.2 times Ueq of the parent atoms (C/N). The highest electron density peak in the final difference map was located close to a Cl atom and was essentially meaningless.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with ellipsoids shown at the 50% probability level. The minor disorder component is not shown.

Crystal data

C16H15Cl5N3O2P Z = 2
Mr = 489.53 F(000) = 496
Triclinic, P1 Dx = 1.607 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 9.9789 (2) Å Cell parameters from 4567 reflections
b = 10.6058 (3) Å θ = 1.0–27.5°
c = 10.8386 (3) Å µ = 0.81 mm1
α = 75.8920 (13)° T = 173 K
β = 72.2250 (15)° Prism, colorless
γ = 69.6050 (15)° 0.18 × 0.14 × 0.12 mm
V = 1011.66 (4) Å3

Data collection

Nonius KappaCCD diffractometer with APEXII CCD detector 4638 independent reflections
Radiation source: fine-focus sealed tube 4083 reflections with I > 2σ(I)
graphite Rint = 0.020
ω and φ scans θmax = 27.6°, θmin = 2.0°
Absorption correction: multi-scan (SORTAV; Blessing, 1997) h = −12→12
Tmin = 0.867, Tmax = 0.909 k = −13→13
8947 measured reflections l = −14→14

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.043P)2 + 2.0234P] where P = (Fo2 + 2Fc2)/3
4638 reflections (Δ/σ)max < 0.001
245 parameters Δρmax = 1.42 e Å3
0 restraints Δρmin = −0.68 e Å3

Special details

Experimental. IR (KBr, cm-1): 3371, 3061, 2875, 1692, 1448, 1257, 1224, 1076, 1043, 885, 837, 751, 675.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Cl1 0.58102 (9) −0.04802 (11) 1.36183 (8) 0.0547 (3)
Cl2 0.87488 (8) −0.22348 (7) 1.35952 (8) 0.03998 (19)
Cl3 0.68228 (12) −0.30242 (9) 1.26210 (11) 0.0590 (3)
P1 0.72798 (7) 0.04068 (7) 0.90391 (6) 0.02507 (16)
O1 0.9079 (2) −0.0722 (2) 1.1030 (2) 0.0386 (5)
O2 0.60042 (19) 0.0572 (2) 0.85370 (18) 0.0317 (4)
N1 0.6903 (2) −0.0446 (2) 1.0605 (2) 0.0262 (4)
H1 0.6044 −0.0605 1.0925 0.031*
C1 0.7866 (3) −0.0882 (3) 1.1360 (3) 0.0259 (5)
C2 0.7338 (3) −0.1636 (3) 1.2751 (3) 0.0301 (5)
N2 0.8865 (2) −0.0463 (3) 0.8250 (2) 0.0352 (6)
H2 0.9630 −0.0151 0.8031 0.042* 0.8823 (17)
C3 0.9024 (3) −0.1740 (3) 0.7909 (3) 0.0335 (7) 0.8823 (17)
H3A 0.8074 −0.1713 0.7779 0.040* 0.8823 (17)
H3B 0.9247 −0.2470 0.8649 0.040* 0.8823 (17)
C4 1.0236 (2) −0.2094 (2) 0.66667 (18) 0.0269 (7) 0.8823 (17)
C5 1.0496 (2) −0.3322 (2) 0.6261 (2) 0.0362 (7) 0.8823 (17)
C6 1.1578 (3) −0.3675 (2) 0.5135 (2) 0.0476 (10) 0.8823 (17)
H6 1.1755 −0.4515 0.4858 0.057* 0.8823 (17)
C7 1.2401 (3) −0.2800 (3) 0.4415 (2) 0.0501 (11) 0.8823 (17)
H7 1.3141 −0.3041 0.3645 0.060* 0.8823 (17)
C8 1.2141 (2) −0.1572 (2) 0.4820 (2) 0.0467 (9) 0.8823 (17)
H8 1.2704 −0.0973 0.4328 0.056* 0.8823 (17)
C9 1.1059 (2) −0.12185 (18) 0.5946 (2) 0.0342 (7) 0.8823 (17)
H9 1.0882 −0.0379 0.6223 0.041* 0.8823 (17)
Cl4 0.94994 (12) −0.44175 (10) 0.71412 (13) 0.0605 (3) 0.8823 (17)
H2' 0.9162 −0.1096 0.8886 0.042* 0.1177 (17)
C3' 0.993 (3) −0.079 (2) 0.730 (2) 0.0335 (7) 0.1177 (17)
H3'1 1.0801 −0.0997 0.7645 0.040* 0.1177 (17)
H3'2 0.9892 0.0079 0.6686 0.040* 0.1177 (17)
C4' 1.036 (2) −0.1806 (18) 0.6432 (18) 0.0269 (7) 0.1177 (17)
C5' 1.148 (2) −0.1813 (19) 0.529 (2) 0.0362 (7) 0.1177 (17)
C6' 1.199 (2) −0.289 (2) 0.4586 (18) 0.0476 (10) 0.1177 (17)
H6' 1.2753 −0.2892 0.3808 0.057* 0.1177 (17)
C7' 1.137 (2) −0.395 (2) 0.501 (2) 0.0501 (11) 0.1177 (17)
H7' 1.1711 −0.4687 0.4529 0.060* 0.1177 (17)
C8' 1.024 (2) −0.3946 (17) 0.6152 (19) 0.0467 (9) 0.1177 (17)
H8' 0.9819 −0.4675 0.6445 0.056* 0.1177 (17)
C9' 0.9738 (19) −0.287 (2) 0.6861 (15) 0.0342 (7) 0.1177 (17)
H9' 0.8970 −0.2867 0.7638 0.041* 0.1177 (17)
Cl4' 1.2278 (9) −0.0556 (8) 0.4817 (10) 0.0605 (3) 0.1177 (17)
N3 0.7555 (2) 0.1823 (2) 0.9050 (2) 0.0309 (5)
H3 0.8465 0.1849 0.8889 0.037*
C10 0.6334 (3) 0.3062 (3) 0.9322 (3) 0.0356 (6)
H10A 0.5478 0.3027 0.9065 0.043*
H10B 0.6632 0.3860 0.8773 0.043*
C11 0.5868 (3) 0.3256 (3) 1.0740 (3) 0.0322 (6)
C12 0.6657 (4) 0.3724 (3) 1.1291 (3) 0.0409 (7)
C13 0.6224 (5) 0.3866 (4) 1.2614 (4) 0.0529 (9)
H13 0.6780 0.4188 1.2971 0.064*
C14 0.4988 (5) 0.3535 (4) 1.3393 (4) 0.0584 (10)
H14 0.4689 0.3624 1.4296 0.070*
C15 0.4189 (4) 0.3081 (4) 1.2880 (4) 0.0559 (9)
H15 0.3331 0.2856 1.3424 0.067*
C16 0.4620 (4) 0.2945 (3) 1.1571 (3) 0.0437 (7)
H16 0.4047 0.2629 1.1228 0.052*
Cl5 0.82320 (12) 0.41376 (12) 1.03083 (12) 0.0672 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0395 (4) 0.0749 (6) 0.0293 (4) 0.0045 (4) −0.0024 (3) −0.0105 (4)
Cl2 0.0424 (4) 0.0350 (4) 0.0463 (4) −0.0098 (3) −0.0260 (3) 0.0039 (3)
Cl3 0.0763 (6) 0.0416 (5) 0.0793 (7) −0.0360 (4) −0.0472 (5) 0.0180 (4)
P1 0.0178 (3) 0.0380 (4) 0.0204 (3) −0.0100 (3) −0.0013 (2) −0.0080 (3)
O1 0.0246 (10) 0.0590 (14) 0.0358 (11) −0.0193 (9) −0.0083 (8) −0.0023 (10)
O2 0.0199 (9) 0.0517 (12) 0.0251 (9) −0.0139 (8) −0.0036 (7) −0.0063 (8)
N1 0.0195 (10) 0.0363 (12) 0.0235 (10) −0.0118 (9) −0.0025 (8) −0.0042 (9)
C1 0.0224 (12) 0.0282 (13) 0.0269 (13) −0.0077 (10) −0.0050 (10) −0.0049 (10)
C2 0.0302 (13) 0.0271 (13) 0.0333 (14) −0.0094 (10) −0.0119 (11) 0.0013 (10)
N2 0.0201 (10) 0.0533 (15) 0.0354 (13) −0.0106 (10) 0.0012 (9) −0.0232 (11)
C3 0.0285 (15) 0.0314 (16) 0.0339 (16) −0.0083 (12) 0.0032 (12) −0.0078 (13)
C4 0.0245 (13) 0.0277 (16) 0.0247 (15) −0.0021 (12) −0.0062 (11) −0.0053 (12)
C5 0.0303 (16) 0.0358 (17) 0.0444 (19) −0.0038 (13) −0.0142 (14) −0.0117 (14)
C6 0.039 (2) 0.052 (2) 0.050 (2) 0.0103 (17) −0.0210 (17) −0.0285 (19)
C7 0.040 (2) 0.068 (3) 0.0244 (17) 0.0100 (19) −0.0069 (15) −0.0146 (17)
C8 0.0312 (17) 0.061 (2) 0.0269 (17) 0.0004 (16) −0.0008 (14) 0.0019 (16)
C9 0.0285 (15) 0.0358 (17) 0.0307 (16) −0.0046 (13) −0.0026 (12) −0.0050 (13)
Cl4 0.0475 (5) 0.0380 (5) 0.0988 (9) −0.0148 (4) −0.0086 (5) −0.0240 (5)
N2' 0.0201 (10) 0.0533 (15) 0.0354 (13) −0.0106 (10) 0.0012 (9) −0.0232 (11)
C3' 0.0285 (15) 0.0314 (16) 0.0339 (16) −0.0083 (12) 0.0032 (12) −0.0078 (13)
C4' 0.0245 (13) 0.0277 (16) 0.0247 (15) −0.0021 (12) −0.0062 (11) −0.0053 (12)
C5' 0.0303 (16) 0.0358 (17) 0.0444 (19) −0.0038 (13) −0.0142 (14) −0.0117 (14)
C6' 0.039 (2) 0.052 (2) 0.050 (2) 0.0103 (17) −0.0210 (17) −0.0285 (19)
C7' 0.040 (2) 0.068 (3) 0.0244 (17) 0.0100 (19) −0.0069 (15) −0.0146 (17)
C8' 0.0312 (17) 0.061 (2) 0.0269 (17) 0.0004 (16) −0.0008 (14) 0.0019 (16)
C9' 0.0285 (15) 0.0358 (17) 0.0307 (16) −0.0046 (13) −0.0026 (12) −0.0050 (13)
Cl4' 0.0475 (5) 0.0380 (5) 0.0988 (9) −0.0148 (4) −0.0086 (5) −0.0240 (5)
N3 0.0251 (11) 0.0398 (13) 0.0293 (12) −0.0138 (10) −0.0051 (9) −0.0035 (10)
C10 0.0399 (15) 0.0336 (15) 0.0342 (15) −0.0088 (12) −0.0169 (12) 0.0002 (11)
C11 0.0369 (14) 0.0232 (13) 0.0353 (15) −0.0020 (11) −0.0174 (12) −0.0017 (11)
C12 0.0452 (17) 0.0320 (15) 0.0484 (18) −0.0072 (13) −0.0219 (14) −0.0041 (13)
C13 0.073 (3) 0.0379 (18) 0.054 (2) 0.0001 (16) −0.038 (2) −0.0127 (15)
C14 0.063 (2) 0.050 (2) 0.0396 (19) 0.0104 (18) −0.0097 (17) −0.0114 (16)
C15 0.048 (2) 0.053 (2) 0.048 (2) −0.0016 (16) −0.0025 (16) −0.0043 (17)
C16 0.0402 (17) 0.0381 (17) 0.0478 (19) −0.0070 (13) −0.0101 (14) −0.0053 (14)
Cl5 0.0632 (6) 0.0785 (7) 0.0774 (7) −0.0424 (5) −0.0238 (5) −0.0030 (5)

Geometric parameters (Å, °)

Cl1—C2 1.759 (3) C3'—H3'2 0.9900
Cl2—C2 1.761 (3) C4'—C5' 1.3900
Cl3—C2 1.768 (3) C4'—C9' 1.3900
P1—O2 1.4724 (18) C5'—C6' 1.3900
P1—N2 1.621 (2) C5'—Cl4' 1.682 (17)
P1—N3 1.622 (2) C6'—C7' 1.3900
P1—N1 1.715 (2) C6'—H6' 0.9500
O1—C1 1.212 (3) C7'—C8' 1.3900
N1—C1 1.339 (3) C7'—H7' 0.9500
N1—H1 0.8800 C8'—C9' 1.3900
C1—C2 1.553 (4) C8'—H8' 0.9500
N2—C3 1.434 (4) C9'—H9' 0.9500
N2—H2 0.8800 N3—C10 1.467 (4)
C3—C4 1.534 (3) N3—H3 0.8800
C3—H3A 0.9900 C10—C11 1.507 (4)
C3—H3B 0.9900 C10—H10A 0.9900
C4—C5 1.3900 C10—H10B 0.9900
C4—C9 1.3900 C11—C12 1.388 (4)
C5—C6 1.3900 C11—C16 1.389 (4)
C5—Cl4 1.713 (2) C12—C13 1.395 (5)
C6—C7 1.3900 C12—Cl5 1.740 (4)
C6—H6 0.9500 C13—C14 1.371 (6)
C7—C8 1.3900 C13—H13 0.9500
C7—H7 0.9500 C14—C15 1.359 (6)
C8—C9 1.3900 C14—H14 0.9500
C8—H8 0.9500 C15—C16 1.380 (5)
C9—H9 0.9500 C15—H15 0.9500
C3'—C4' 1.47 (3) C16—H16 0.9500
C3'—H3'1 0.9900
O2—P1—N2 116.10 (12) H3'1—C3'—H3'2 105.4
O2—P1—N3 114.51 (12) C5'—C4'—C9' 120.0
N2—P1—N3 103.26 (13) C5'—C4'—C3' 121.6 (16)
O2—P1—N1 104.46 (11) C9'—C4'—C3' 118.0 (16)
N2—P1—N1 108.13 (13) C4'—C5'—C6' 120.0
N3—P1—N1 110.31 (11) C4'—C5'—Cl4' 119.8 (12)
C1—N1—P1 122.56 (18) C6'—C5'—Cl4' 120.1 (12)
C1—N1—H1 118.7 C5'—C6'—C7' 120.0
P1—N1—H1 118.7 C5'—C6'—H6' 120.0
O1—C1—N1 124.8 (2) C7'—C6'—H6' 120.0
O1—C1—C2 119.8 (2) C8'—C7'—C6' 120.0
N1—C1—C2 115.5 (2) C8'—C7'—H7' 120.0
C1—C2—Cl1 108.21 (18) C6'—C7'—H7' 120.0
C1—C2—Cl2 110.50 (18) C7'—C8'—C9' 120.0
Cl1—C2—Cl2 109.24 (16) C7'—C8'—H8' 120.0
C1—C2—Cl3 109.63 (19) C9'—C8'—H8' 120.0
Cl1—C2—Cl3 109.77 (15) C8'—C9'—C4' 120.0
Cl2—C2—Cl3 109.47 (15) C8'—C9'—H9' 120.0
C3—N2—P1 120.0 (2) C4'—C9'—H9' 120.0
C3—N2—H2 120.0 C10—N3—P1 122.06 (19)
P1—N2—H2 120.0 C10—N3—H3 119.0
N2—C3—C4 113.7 (2) P1—N3—H3 119.0
N2—C3—H3A 108.8 N3—C10—C11 113.5 (2)
C4—C3—H3A 108.8 N3—C10—H10A 108.9
N2—C3—H3B 108.8 C11—C10—H10A 108.9
C4—C3—H3B 108.8 N3—C10—H10B 108.9
H3A—C3—H3B 107.7 C11—C10—H10B 108.9
C5—C4—C9 120.0 H10A—C10—H10B 107.7
C5—C4—C3 118.28 (18) C12—C11—C16 116.5 (3)
C9—C4—C3 121.71 (18) C12—C11—C10 122.8 (3)
C4—C5—C6 120.0 C16—C11—C10 120.7 (3)
C4—C5—Cl4 120.65 (14) C11—C12—C13 121.7 (3)
C6—C5—Cl4 119.35 (14) C11—C12—Cl5 119.1 (3)
C7—C6—C5 120.0 C13—C12—Cl5 119.1 (3)
C7—C6—H6 120.0 C14—C13—C12 119.3 (3)
C5—C6—H6 120.0 C14—C13—H13 120.3
C6—C7—C8 120.0 C12—C13—H13 120.3
C6—C7—H7 120.0 C15—C14—C13 120.3 (4)
C8—C7—H7 120.0 C15—C14—H14 119.9
C9—C8—C7 120.0 C13—C14—H14 119.9
C9—C8—H8 120.0 C14—C15—C16 120.1 (4)
C7—C8—H8 120.0 C14—C15—H15 119.9
C8—C9—C4 120.0 C16—C15—H15 119.9
C8—C9—H9 120.0 C15—C16—C11 121.9 (3)
C4—C9—H9 120.0 C15—C16—H16 119.0
C4'—C3'—H3'1 103.9 C11—C16—H16 119.0
C4'—C3'—H3'2 103.9
O2—P1—N1—C1 174.8 (2) C9'—C4'—C5'—C6' 0.0
N2—P1—N1—C1 50.6 (2) C3'—C4'—C5'—C6' 172 (2)
N3—P1—N1—C1 −61.6 (2) C9'—C4'—C5'—Cl4' −177.3 (15)
P1—N1—C1—O1 0.2 (4) C3'—C4'—C5'—Cl4' −5(2)
P1—N1—C1—C2 −179.98 (18) C4'—C5'—C6'—C7' 0.0
O1—C1—C2—Cl1 116.0 (3) Cl4'—C5'—C6'—C7' 177.2 (16)
N1—C1—C2—Cl1 −63.9 (3) C5'—C6'—C7'—C8' 0.0
O1—C1—C2—Cl2 −3.6 (3) C6'—C7'—C8'—C9' 0.0
N1—C1—C2—Cl2 176.56 (19) C7'—C8'—C9'—C4' 0.0
O1—C1—C2—Cl3 −124.3 (2) C5'—C4'—C9'—C8' 0.0
N1—C1—C2—Cl3 55.8 (3) C3'—C4'—C9'—C8' −172 (2)
O2—P1—N2—C3 −47.0 (3) O2—P1—N3—C10 34.9 (2)
N3—P1—N2—C3 −173.2 (2) N2—P1—N3—C10 162.0 (2)
N1—P1—N2—C3 69.9 (3) N1—P1—N3—C10 −82.6 (2)
P1—N2—C3—C4 151.5 (2) P1—N3—C10—C11 94.5 (3)
N2—C3—C4—C5 179.0 (2) N3—C10—C11—C12 77.3 (3)
N2—C3—C4—C9 −1.5 (4) N3—C10—C11—C16 −101.5 (3)
C9—C4—C5—C6 0.0 C16—C11—C12—C13 0.4 (4)
C3—C4—C5—C6 179.5 (2) C10—C11—C12—C13 −178.5 (3)
C9—C4—C5—Cl4 179.67 (18) C16—C11—C12—Cl5 −179.9 (2)
C3—C4—C5—Cl4 −0.8 (2) C10—C11—C12—Cl5 1.2 (4)
C4—C5—C6—C7 0.0 C11—C12—C13—C14 0.0 (5)
Cl4—C5—C6—C7 −179.67 (18) Cl5—C12—C13—C14 −179.7 (3)
C5—C6—C7—C8 0.0 C12—C13—C14—C15 −0.3 (5)
C6—C7—C8—C9 0.0 C13—C14—C15—C16 0.2 (6)
C7—C8—C9—C4 0.0 C14—C15—C16—C11 0.2 (5)
C5—C4—C9—C8 0.0 C12—C11—C16—C15 −0.5 (5)
C3—C4—C9—C8 −179.5 (3) C10—C11—C16—C15 178.4 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···O2i 0.88 1.94 2.804 (3) 168.
N2—H2···O1ii 0.88 2.38 3.106 (3) 141.
N2'—H2'···O1 0.88 2.42 3.025 (3) 126.
N3—H3···O1ii 0.88 2.34 3.129 (3) 149.

Symmetry codes: (i) −x+1, −y, −z+2; (ii) −x+2, −y, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5176).

References

  1. Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.
  2. Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
  3. Blessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.
  4. Hooft, R. (1998). COLLECT Nonius BV, Delft. The Netherlands.
  5. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  6. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  7. Pourayoubi, M., Tarahhomi, A., Saneei, A., Rheingold, A. L. & Golen, J. A. (2011). Acta Cryst. C67, o265–o272. [DOI] [PubMed]
  8. Rudd, M. D., Lindeman, S. V. & Husebye, S. (1996). Acta Chem. Scand. 50, 759–774.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Toghraee, M., Pourayoubi, M. & Divjakovic, V. (2011). Polyhedron, 30, 1680–1690.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811027681/sj5176sup1.cif

e-67-o2046-sup1.cif (23.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811027681/sj5176Isup2.hkl

e-67-o2046-Isup2.hkl (222.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES