Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jul 16;67(Pt 8):o2051. doi: 10.1107/S1600536811027760

(E)-Methyl 2-chloro-4-dicyclo­hexyl­amino-4-oxobut-2-enoate

Cai-Mei Liu a, Fu-Ling Xue a, Jian-Hua Fu a, Zhao-Yang Wang a,*
PMCID: PMC3213498  PMID: 22091077

Abstract

In the title compound, C17H26ClNO3, both cyclo­hexyl rings have chair conformations. In the crystal, mol­ecules are linked by weak inter­molecular C—H⋯O hydrogen bonds.

Related literature

For the synthesis, see: Song et al. (2009). For the biological activity of 2(5H)-furan­ones, see: Lattmann et al. (2005); Rowland et al. (2007); Kim et al. (2002). For chemical, pharmaceutical and agrochemical applications of 3,4-amino-2(5H)-furanones, see: Kimura et al. (2000); Tanoury et al. (2008). For related structures, see: Lattmann et al. (1999, 2006).graphic file with name e-67-o2051-scheme1.jpg

Experimental

Crystal data

  • C17H26ClNO3

  • M r = 327.84

  • Monoclinic, Inline graphic

  • a = 8.8291 (19) Å

  • b = 10.533 (2) Å

  • c = 19.139 (4) Å

  • β = 92.955 (3)°

  • V = 1777.5 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 298 K

  • 0.32 × 0.22 × 0.20 mm

Data collection

  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.931, T max = 0.956

  • 8635 measured reflections

  • 3886 independent reflections

  • 2457 reflections with I > 2σ(I)

  • R int = 0.051

Refinement

  • R[F 2 > 2σ(F 2)] = 0.053

  • wR(F 2) = 0.160

  • S = 1.02

  • 3886 reflections

  • 201 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811027760/lx2191sup1.cif

e-67-o2051-sup1.cif (20.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811027760/lx2191Isup2.hkl

e-67-o2051-Isup2.hkl (185.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811027760/lx2191Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17A⋯O1i 0.96 2.44 3.323 (4) 153
C9—H9⋯O2ii 0.93 2.50 3.389 (3) 160

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (grant No. 20772035) and the Natural Science Foundation of Guangdong Province, China (grant No. 5300082).

supplementary crystallographic information

Comment

Molecules possessing 2(5H)-furanone moiety are useful heterocyclic compounds due to their valuable biological activities such as antibacterial, anti-inflammatory and antitumor (Lattmann et al., 2005; Rowland et al., 2007; Kim et al., 2002). The 5-alkoxy-3,4-dihalo-2(5H)-furanones being a kind of synthons are widely used in tandem Michael addition-elimination reactions (Song et al., 2009). The 4-amino-2(5H)-furanones exhibit an antibiotic activity against MRSA (Lattmann et al., 1999; Lattmann et al., 2006). Therefore, we are interested in the tandem Michael addition-elimination reaction of the synthon 3,4-dichloro-5-methoxyfuran-2(5H)-one with secondary amines in the present of potassium fluoride. However, we obtained an unanticipated product, (E)-methyl 2-chloro-4-(dicyclohexylamino)-4-oxobut-2-enoate, instead of the expected compound 3-chloro-4-(dicyclohexylamino)-5-methoxyfuran-2(5H)-one (Lattmann et al., 1999). Herein, we report the crystal structure of the title compound.

In the title compound (Fig. 1), the both cyclohexyl rings are in the chair form. The molecular packing (Fig. 2) is stabilized by weak intermolecular C—H···O hydrogen bonds; the first one between the H atom of the vinyl group and the O atom of the ester group (Table 1; C9—H9···O2ii), and a methyl H atom and the O atom of the amide group (Table 1; C17—H17A···O1i).

Experimental

The precursor 3,4-dichloro-5-methoxyfuran-2(5H)-one was prepared according to the literature procedure (Song et al., 2009). The solution of dicyclohexylamine (2.736 g, 3.0 mL) in tetrahydrofuran (3.0 mL) was added to a stirred solution of 3,4-dichloro-5-methoxyfuran-(5H)-one (36.39 mg, 2.0 mmol) and potassium fluoride (34.85 mg, 6.0 mmol) in tetrahydrofuran (3.0 mL) under nitrogen atmosphere. After being stirred at room temperature for 24 h, the solvent was removed under reduced pressure. The residual solid was dissolved in dichloromethane and then the combined organic layer was concentrated under reduced pressure. The residue was purified by silica gel column chromatography with the gradient mixture of petroleum ether and ethyl acetate to give the title compound (yield 22.6%). Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in (insert proper solvent) at room temperature.

Refinement

H atoms were positioned in calculated positions with C—H = 0.93–0.98 Å and were refined using a riding model, with Uiso(H) = 1.5Ueq(C) for methyl and 1.2Ueq(C) for the others.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound showing the atom-labelling scheme. Ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

A view of the C—H···O hydrogen bonds (dotted lines) in the crystal structure of the title compound. [Symmetry codes: (i) - x + 2, - y + 1, - z; (ii) - x + 2, y + 1/2, - z + 1/2; (iii) - x + 2, y - 1/2, - z + 1/2.]

Crystal data

C17H26ClNO3 F(000) = 704
Mr = 327.84 Dx = 1.225 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2253 reflections
a = 8.8291 (19) Å θ = 2.2–23.5°
b = 10.533 (2) Å µ = 0.23 mm1
c = 19.139 (4) Å T = 298 K
β = 92.955 (3)° Block, colourless
V = 1777.5 (6) Å3 0.32 × 0.22 × 0.20 mm
Z = 4

Data collection

Bruker APEXII area-detector diffractometer 3886 independent reflections
Radiation source: fine-focus sealed tube 2457 reflections with I > 2σ(I)
graphite Rint = 0.051
Detector resolution: 10.0 pixels mm-1 θmax = 27.0°, θmin = 2.1°
φ and ω scans h = −4→11
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) k = −13→12
Tmin = 0.931, Tmax = 0.956 l = −24→24
8635 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053 H-atom parameters constrained
wR(F2) = 0.160 w = 1/[σ2(Fo2) + (0.070P)2] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max = 0.001
3886 reflections Δρmax = 0.24 e Å3
201 parameters Δρmin = −0.28 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.015 (3)

Special details

Experimental. Data for (I): 1H NMR (400 MHz, CDCl3, TMS): 1.073-1.564 (12H, m, 6CH2), 1.681-2.436 (8H, m, 4CH2), 2.973-3.124 (1H, m, CH), 3.350-3.417 (1H, m, CH), 3.813 (3H, s, CH3), ESI-MS, m/z (%): Calcd for C17H27ClNO3+([M+H]+): 328.16(100.0), 330.16(32.6), found: 328.39(15.0), 330.43(5.0).
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 1.02330 (7) 0.47301 (6) 0.29004 (3) 0.0574 (2)
N1 0.7284 (2) 0.73071 (19) 0.10932 (8) 0.0427 (5)
C1 0.6049 (2) 0.7104 (2) 0.15716 (10) 0.0452 (6)
H1 0.6483 0.6628 0.1974 0.054*
C6 0.4768 (3) 0.6305 (3) 0.12475 (14) 0.0623 (7)
H6A 0.4338 0.6728 0.0833 0.075*
H6B 0.5167 0.5492 0.1105 0.075*
C3 0.4221 (3) 0.8114 (3) 0.23589 (14) 0.0711 (8)
H3A 0.4656 0.7696 0.2774 0.085*
H3B 0.3815 0.8924 0.2501 0.085*
C2 0.5460 (3) 0.8343 (3) 0.18519 (12) 0.0588 (7)
H2A 0.5062 0.8861 0.1465 0.071*
H2B 0.6288 0.8804 0.2088 0.071*
C4 0.2953 (3) 0.7311 (3) 0.20438 (14) 0.0662 (8)
H4A 0.2238 0.7126 0.2398 0.079*
H4B 0.2421 0.7781 0.1671 0.079*
C5 0.3537 (3) 0.6090 (3) 0.17577 (18) 0.0805 (9)
H5A 0.2704 0.5633 0.1523 0.097*
H5B 0.3937 0.5568 0.2142 0.097*
C9 0.9064 (2) 0.6357 (2) 0.19601 (10) 0.0407 (5)
H9 0.9020 0.6907 0.2338 0.049*
C10 0.9445 (2) 0.5170 (2) 0.20899 (10) 0.0414 (5)
C8 0.8696 (2) 0.6886 (2) 0.12389 (10) 0.0431 (5)
C7 0.6909 (3) 0.7947 (2) 0.04169 (10) 0.0469 (6)
H7 0.5843 0.8202 0.0426 0.056*
C11 0.9352 (3) 0.4105 (2) 0.15775 (11) 0.0519 (6)
C12 0.7807 (3) 0.9153 (3) 0.03266 (13) 0.0625 (7)
H12A 0.8878 0.8952 0.0320 0.075*
H12B 0.7662 0.9716 0.0718 0.075*
C16 0.7013 (3) 0.7045 (3) −0.02024 (11) 0.0617 (7)
H16A 0.6369 0.6312 −0.0140 0.074*
H16B 0.8049 0.6752 −0.0233 0.074*
C13 0.7293 (4) 0.9818 (3) −0.03560 (14) 0.0788 (10)
H13A 0.6254 1.0104 −0.0327 0.095*
H13B 0.7924 1.0557 −0.0423 0.095*
C15 0.6504 (4) 0.7749 (4) −0.08734 (13) 0.0845 (11)
H15A 0.6612 0.7190 −0.1271 0.101*
H15B 0.5439 0.7967 −0.0855 0.101*
C14 0.7399 (4) 0.8930 (4) −0.09763 (14) 0.0881 (12)
H14A 0.7018 0.9357 −0.1399 0.106*
H14B 0.8452 0.8710 −0.1033 0.106*
O1 0.97348 (18) 0.69654 (19) 0.08431 (8) 0.0573 (5)
O3 0.8279 (2) 0.43037 (19) 0.10887 (9) 0.0648 (5)
O2 1.0144 (3) 0.3193 (2) 0.16138 (10) 0.0985 (9)
C17 0.8142 (4) 0.3387 (4) 0.05276 (16) 0.0938 (11)
H17A 0.8939 0.3520 0.0213 0.141*
H17B 0.7177 0.3487 0.0279 0.141*
H17C 0.8218 0.2545 0.0718 0.141*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0631 (4) 0.0582 (4) 0.0499 (3) 0.0121 (3) −0.0066 (3) 0.0093 (2)
N1 0.0360 (10) 0.0521 (12) 0.0399 (9) 0.0072 (8) 0.0010 (7) 0.0075 (7)
C1 0.0338 (11) 0.0604 (16) 0.0417 (11) 0.0065 (10) 0.0025 (8) 0.0121 (10)
C6 0.0532 (15) 0.0544 (18) 0.0806 (17) −0.0074 (12) 0.0148 (13) −0.0088 (13)
C3 0.0494 (15) 0.105 (3) 0.0594 (14) −0.0008 (15) 0.0108 (12) −0.0137 (15)
C2 0.0438 (13) 0.0717 (19) 0.0617 (14) −0.0059 (12) 0.0110 (11) −0.0175 (12)
C4 0.0413 (14) 0.084 (2) 0.0744 (17) 0.0032 (13) 0.0129 (12) 0.0066 (14)
C5 0.0538 (17) 0.071 (2) 0.118 (2) −0.0079 (15) 0.0236 (16) 0.0114 (17)
C9 0.0358 (11) 0.0439 (14) 0.0422 (10) 0.0024 (9) −0.0014 (8) −0.0004 (9)
C10 0.0362 (11) 0.0462 (14) 0.0417 (10) 0.0056 (9) 0.0023 (8) 0.0038 (9)
C8 0.0410 (12) 0.0448 (14) 0.0434 (11) 0.0036 (10) −0.0004 (9) −0.0023 (9)
C7 0.0440 (12) 0.0558 (15) 0.0408 (10) 0.0090 (11) 0.0004 (9) 0.0082 (9)
C11 0.0612 (15) 0.0469 (15) 0.0486 (12) 0.0088 (12) 0.0128 (11) 0.0018 (10)
C12 0.0655 (17) 0.0614 (19) 0.0607 (14) 0.0049 (14) 0.0044 (12) 0.0136 (12)
C16 0.0622 (16) 0.078 (2) 0.0440 (12) 0.0043 (14) −0.0025 (11) −0.0009 (11)
C13 0.081 (2) 0.079 (2) 0.0781 (19) 0.0246 (17) 0.0235 (16) 0.0392 (16)
C15 0.080 (2) 0.129 (3) 0.0432 (13) 0.022 (2) −0.0034 (13) 0.0081 (15)
C14 0.092 (2) 0.119 (3) 0.0547 (15) 0.040 (2) 0.0198 (15) 0.0367 (17)
O1 0.0416 (9) 0.0774 (14) 0.0534 (9) 0.0111 (8) 0.0070 (7) 0.0084 (8)
O3 0.0602 (11) 0.0674 (13) 0.0654 (10) 0.0056 (9) −0.0101 (9) −0.0238 (9)
O2 0.150 (2) 0.0773 (17) 0.0678 (12) 0.0605 (16) −0.0023 (13) −0.0091 (10)
C17 0.107 (3) 0.096 (3) 0.0781 (19) 0.003 (2) −0.0031 (18) −0.0433 (18)

Geometric parameters (Å, °)

Cl1—C10 1.730 (2) C8—O1 1.222 (2)
N1—C8 1.339 (3) C7—C12 1.512 (4)
N1—C1 1.475 (3) C7—C16 1.525 (3)
N1—C7 1.481 (3) C7—H7 0.9800
C1—C2 1.514 (4) C11—O2 1.189 (3)
C1—C6 1.517 (3) C11—O3 1.313 (3)
C1—H1 0.9800 C12—C13 1.530 (3)
C6—C5 1.515 (3) C12—H12A 0.9700
C6—H6A 0.9700 C12—H12B 0.9700
C6—H6B 0.9700 C16—C15 1.530 (4)
C3—C4 1.504 (4) C16—H16A 0.9700
C3—C2 1.518 (3) C16—H16B 0.9700
C3—H3A 0.9700 C13—C14 1.518 (5)
C3—H3B 0.9700 C13—H13A 0.9700
C2—H2A 0.9700 C13—H13B 0.9700
C2—H2B 0.9700 C15—C14 1.493 (5)
C4—C5 1.500 (4) C15—H15A 0.9700
C4—H4A 0.9700 C15—H15B 0.9700
C4—H4B 0.9700 C14—H14A 0.9700
C5—H5A 0.9700 C14—H14B 0.9700
C5—H5B 0.9700 O3—C17 1.444 (3)
C9—C10 1.315 (3) C17—H17A 0.9600
C9—C8 1.508 (3) C17—H17B 0.9600
C9—H9 0.9300 C17—H17C 0.9600
C10—C11 1.489 (3)
C8—N1—C1 122.19 (17) N1—C8—C9 117.89 (18)
C8—N1—C7 119.78 (17) N1—C7—C12 112.77 (19)
C1—N1—C7 117.97 (16) N1—C7—C16 112.1 (2)
N1—C1—C2 111.9 (2) C12—C7—C16 112.4 (2)
N1—C1—C6 112.71 (18) N1—C7—H7 106.3
C2—C1—C6 111.2 (2) C12—C7—H7 106.3
N1—C1—H1 106.9 C16—C7—H7 106.3
C2—C1—H1 106.9 O2—C11—O3 124.8 (2)
C6—C1—H1 106.9 O2—C11—C10 123.9 (2)
C5—C6—C1 111.3 (2) O3—C11—C10 111.3 (2)
C5—C6—H6A 109.4 C7—C12—C13 110.4 (2)
C1—C6—H6A 109.4 C7—C12—H12A 109.6
C5—C6—H6B 109.4 C13—C12—H12A 109.6
C1—C6—H6B 109.4 C7—C12—H12B 109.6
H6A—C6—H6B 108.0 C13—C12—H12B 109.6
C4—C3—C2 112.3 (2) H12A—C12—H12B 108.1
C4—C3—H3A 109.2 C7—C16—C15 108.9 (2)
C2—C3—H3A 109.2 C7—C16—H16A 109.9
C4—C3—H3B 109.2 C15—C16—H16A 109.9
C2—C3—H3B 109.2 C7—C16—H16B 109.9
H3A—C3—H3B 107.9 C15—C16—H16B 109.9
C1—C2—C3 111.2 (2) H16A—C16—H16B 108.3
C1—C2—H2A 109.4 C14—C13—C12 111.0 (2)
C3—C2—H2A 109.4 C14—C13—H13A 109.4
C1—C2—H2B 109.4 C12—C13—H13A 109.4
C3—C2—H2B 109.4 C14—C13—H13B 109.4
H2A—C2—H2B 108.0 C12—C13—H13B 109.4
C5—C4—C3 111.5 (2) H13A—C13—H13B 108.0
C5—C4—H4A 109.3 C14—C15—C16 112.3 (3)
C3—C4—H4A 109.3 C14—C15—H15A 109.1
C5—C4—H4B 109.3 C16—C15—H15A 109.1
C3—C4—H4B 109.3 C14—C15—H15B 109.1
H4A—C4—H4B 108.0 C16—C15—H15B 109.1
C4—C5—C6 112.2 (3) H15A—C15—H15B 107.9
C4—C5—H5A 109.2 C15—C14—C13 110.9 (2)
C6—C5—H5A 109.2 C15—C14—H14A 109.5
C4—C5—H5B 109.2 C13—C14—H14A 109.5
C6—C5—H5B 109.2 C15—C14—H14B 109.5
H5A—C5—H5B 107.9 C13—C14—H14B 109.5
C10—C9—C8 124.41 (19) H14A—C14—H14B 108.1
C10—C9—H9 117.8 C11—O3—C17 116.9 (2)
C8—C9—H9 117.8 O3—C17—H17A 109.5
C9—C10—C11 125.92 (19) O3—C17—H17B 109.5
C9—C10—Cl1 120.73 (17) H17A—C17—H17B 109.5
C11—C10—Cl1 113.26 (17) O3—C17—H17C 109.5
O1—C8—N1 124.64 (19) H17A—C17—H17C 109.5
O1—C8—C9 117.33 (19) H17B—C17—H17C 109.5
C8—N1—C1—C2 116.2 (2) C10—C9—C8—N1 115.7 (3)
C7—N1—C1—C2 −66.8 (3) C8—N1—C7—C12 −61.9 (3)
C8—N1—C1—C6 −117.6 (2) C1—N1—C7—C12 121.0 (2)
C7—N1—C1—C6 59.4 (3) C8—N1—C7—C16 66.2 (3)
N1—C1—C6—C5 178.7 (2) C1—N1—C7—C16 −110.9 (2)
C2—C1—C6—C5 −54.7 (3) C9—C10—C11—O2 152.5 (3)
N1—C1—C2—C3 −178.38 (19) Cl1—C10—C11—O2 −23.9 (3)
C6—C1—C2—C3 54.6 (3) C9—C10—C11—O3 −28.0 (3)
C4—C3—C2—C1 −54.5 (3) Cl1—C10—C11—O3 155.65 (17)
C2—C3—C4—C5 53.9 (4) N1—C7—C12—C13 −176.0 (2)
C3—C4—C5—C6 −53.9 (3) C16—C7—C12—C13 56.0 (3)
C1—C6—C5—C4 54.5 (3) N1—C7—C16—C15 176.1 (2)
C8—C9—C10—C11 −10.0 (4) C12—C7—C16—C15 −55.7 (3)
C8—C9—C10—Cl1 166.08 (16) C7—C12—C13—C14 −55.2 (3)
C1—N1—C8—O1 175.6 (2) C7—C16—C15—C14 56.3 (3)
C7—N1—C8—O1 −1.4 (4) C16—C15—C14—C13 −57.4 (3)
C1—N1—C8—C9 −8.9 (3) C12—C13—C14—C15 56.2 (4)
C7—N1—C8—C9 174.2 (2) O2—C11—O3—C17 −5.0 (4)
C10—C9—C8—O1 −68.4 (3) C10—C11—O3—C17 175.5 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C17—H17A···O1i 0.96 2.44 3.323 (4) 153.
C9—H9···O2ii 0.93 2.50 3.389 (3) 160.

Symmetry codes: (i) −x+2, −y+1, −z; (ii) −x+2, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LX2191).

References

  1. Bruker (2008). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  3. Kim, Y., Nam, N.-H., You, Y.-J. & Ahn, B.-Z. (2002). Bioorg. Med. Chem. Lett. 12, 719–722. [DOI] [PubMed]
  4. Kimura, Y., Mizuno, T., Kawano, T., Okada, K. & Shimad, A. (2000). Phytochemistry, 53, 829–831. [DOI] [PubMed]
  5. Lattmann, E., Billington, D. C. & Langley, C. A. (1999). Drug Des. Discov. 16, 243–250. [PubMed]
  6. Lattmann, E., Dunn, S., Niamsanit, S. & Sattayasai, N. (2005). Bioorg. Med. Chem. Lett. 15, 919–921. [DOI] [PubMed]
  7. Lattmann, E., Sattayasai, N., Schwalbe, C. S., Niamsanit, S., Billington, D. C., Lattmann, P., Langley, C. A., Singh, H. & Dunn, S. (2006). Curr. Drug Discov. Technol. 3, 125–134. [DOI] [PubMed]
  8. Rowland, S., Clark, P., Gordon, R., Mullen, A., Guay, J., Dufresne, L., Brideau, C., Cote, B., Ducharme, Y. & Mancini, J. (2007). Eur. J. Pharmacol. 560, 216–224. [DOI] [PubMed]
  9. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Song, X.-M., Wang, Z.-Y., Li, J.-X. & Fu, J.-H. (2009). Chin. J. Org. Chem. 11, 1804–1810.
  12. Tanoury, G. J., Chen, M. Z., Dong, Y., Forslund, R. E. & Magdziak, D. (2008). Org. Lett. 10, 185–188. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811027760/lx2191sup1.cif

e-67-o2051-sup1.cif (20.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811027760/lx2191Isup2.hkl

e-67-o2051-Isup2.hkl (185.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811027760/lx2191Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES