Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jul 16;67(Pt 8):o2057–o2058. doi: 10.1107/S1600536811027978

2-Amino-3-carb­oxy­pyridinium nitrate

Fadila Berrah a,, Sofiane Bouacida b,*,, Thierry Roisnel c
PMCID: PMC3213504  PMID: 22091083

Abstract

In the crystal structure of the title compound, C6H7N2O2 +·NO3 , the cations are linked via C—H⋯O hydrogen bonds, forming infinite chains running along the b axis. These chains are further linked through N—H⋯O, O—H⋯O and C—H⋯O hydrogen bonds to the nitrate anions, forming well-separated infinite planar layers parallel to (001).

Related literature

For hybrid compounds based on nicotinic acid, see: Athimoolam et al. (2005); Athimoolam & Rajaram (2005a ,b ); Chen (2009); Slouf (2001); Ye et al. (2010). For hybrid compounds based on amino-nicotinic acid derivatives, see: Akriche & Rzaigui (2007); Berrah et al. (2011a ); Giantsidis & Turnbull (2000). For related nitrate compounds, see: Berrah et al. (2011b ); Jebas et al. (2006).graphic file with name e-67-o2057-scheme1.jpg

Experimental

Crystal data

  • C6H7N2O2 +·NO3

  • M r = 201.15

  • Tetragonal, Inline graphic

  • a = 16.122 (2) Å

  • c = 12.446 (3) Å

  • V = 3235.0 (11) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.15 mm−1

  • T = 150 K

  • 0.39 × 0.07 × 0.05 mm

Data collection

  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002) T min = 0.476, T max = 0.993

  • 5438 measured reflections

  • 1509 independent reflections

  • 921 reflections with I > 2σ(I)

  • R int = 0.112

Refinement

  • R[F 2 > 2σ(F 2)] = 0.059

  • wR(F 2) = 0.158

  • S = 0.97

  • 1509 reflections

  • 128 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811027978/lx2193sup1.cif

e-67-o2057-sup1.cif (19.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811027978/lx2193Isup2.hkl

e-67-o2057-Isup2.hkl (73.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811027978/lx2193Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O3i 0.86 1.97 2.803 (4) 162
N3—H3A⋯O2i 0.86 2.18 3.017 (4) 165
N3—H3A⋯O2ii 0.86 2.43 2.967 (4) 121
N3—H3B⋯O4 0.86 2.10 2.716 (5) 128
O5—H51⋯O3iii 0.82 1.85 2.670 (4) 180
C4—H4⋯O1iv 0.93 2.42 3.197 (6) 141
C5—H5⋯O4v 0.93 2.30 3.216 (6) 167

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

We are grateful to the LCATM Laboratory, Université Larbi Ben M’hidi, Oum El Bouaghi, Algeria, for financial support.

supplementary crystallographic information

Comment

Crystal structures of hybrid compounds based on nicotinic acid or its amino derivatives and inorganic acids have been reported (Athimoolam et al., 2005; Athimoolam & Rajaram, 2005a, b; Chen, 2009; Giantsidis & Turnbull, 2000; Jebas et al., 2006; Slouf, 2001; Ye et al., 2010) showing interesting structural diversity governed mainly by hydrogen bonds. Anion substitution seems to have an important influence on hydrogen bound patterns. In attempt to elucidate this influence and as part of our search for new hybrid compounds based on protonated N-hyterocycle, we report in this paper the new structure of 2-aminonicotinium nitrate; its homologues obtained with phosphate and sulfate anions have been described previously (Akriche & Rzaigui, 2007; Berrah et al., 2011a).

The asymmetric unit of the title compound (Fig. 1) contains one cation and one anion with geometry similar to that observed in similar compounds (Akriche & Rzaigui, 2007; Berrah et al., 2011a, b; Jebas et al., 2006). However in this structure, cations do not form dimers via N–H···O hydrogen bonds as observed in the structures obtained with phosphate and sulfate anions but they are linked to each other via C–H···O hydrogen bonds to form infinite chains running along the b axis (Table 1 & Fig. 2,). These chains are further linked, through N–H···O, O–H···O and C–H···O hydrogen contacts, to nitrate anions to form well separated infinite planar layers parallel to (001) (Fig. 3). A such two-dimensional network have been already observed in compounds including nicotinium entities (Giantsidis & Turnbull, 2000; Slouf, 2001; Ye et al., 2010).

Experimental

The title compound was synthesized by reacting 3-amino-pyridine-2-carboxylic acid (0.138 mg, 1 mmol) with nitriic acid (1 mmol)in a solution of equal volume of H2O and CH3OH. Slow evaporation leads to well crystallized colourless needles.

Refinement

All the Friedel pairs were merged. All non-H atoms were refined with anisotropic atomic displacement parameters. The remaining H atoms were localized on Fourier maps but introduced in calculated positions and treated as riding on their parent atoms (C, N or O) with C–H = 0.93 Å, O–H = 0.82 Å and N–H = 0.86 Å with Uiso(H) = 1.2 Ueq(C or N) and Uiso(H = 1.5 Ueq(O).

Figures

Fig. 1.

Fig. 1.

The structure of the title compound with the atomic labelling scheme. Displacement are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

A part of crystal packing showing cationic infinite chains linked to nitrate anions via [N–H···O, O–H···O and C–H···O] hydrogen contacts. Hydrogen bonds are shown as dashed lines. [Symmetry codes: (i) y + 1/2, -x, z - 1/4; (ii) -y + 1/2, x, z - 1/4; (iii) -y, -x + 1/2, z - 1/4; (iv) y, x - 1/2, z - 1/4; (v) -x + 1/2, y - 1/2, z.]

Fig. 3.

Fig. 3.

Layered packing of the structure viewed down the b axis.

Crystal data

C6H7N2O2+·NO3 Dx = 1.652 Mg m3
Mr = 201.15 Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I41cd Cell parameters from 491 reflections
Hall symbol: I 4bw -2c θ = 3.3–20.3°
a = 16.122 (2) Å µ = 0.15 mm1
c = 12.446 (3) Å T = 150 K
V = 3235.0 (11) Å3 Needle, colourless
Z = 16 0.39 × 0.07 × 0.05 mm
F(000) = 1664

Data collection

Bruker APEXII diffractometer 921 reflections with I > 2σ(I)
graphite Rint = 0.112
CCD rotation images, thin slices scans θmax = 27.5°, θmin = 3.3°
Absorption correction: multi-scan (SADABS; Sheldrick, 2002) h = −16→20
Tmin = 0.476, Tmax = 0.993 k = −13→20
5438 measured reflections l = −16→10
1509 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059 Hydrogen site location: difference Fourier map
wR(F2) = 0.158 H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.076P)2] where P = (Fo2 + 2Fc2)/3
1509 reflections (Δ/σ)max < 0.001
128 parameters Δρmax = 0.41 e Å3
1 restraint Δρmin = −0.28 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.1754 (3) 0.1137 (3) 0.0309 (6) 0.0288 (11)
C2 0.1875 (3) 0.0223 (2) 0.0276 (6) 0.0229 (10)
C3 0.1218 (3) −0.0300 (3) 0.0259 (6) 0.0295 (12)
H3 0.0686 −0.0078 0.0264 0.035*
C4 0.1311 (3) −0.1174 (3) 0.0233 (7) 0.0309 (11)
H4 0.0854 −0.1526 0.0215 0.037*
C5 0.2092 (3) −0.1469 (3) 0.0235 (7) 0.0302 (12)
H5 0.2179 −0.2039 0.0221 0.036*
C6 0.2702 (2) −0.0099 (3) 0.0279 (10) 0.0234 (10)
N1 0.1623 (2) −0.0149 (2) 0.2777 (8) 0.0247 (8)
N2 0.2755 (2) −0.0950 (2) 0.0256 (5) 0.0269 (9)
H2 0.3242 −0.1168 0.0256 0.032*
N3 0.3388 (2) 0.0327 (2) 0.0312 (5) 0.0308 (10)
H3A 0.3858 0.0075 0.032 0.037*
H3B 0.3371 0.086 0.0326 0.037*
O1 0.20156 (19) 0.05016 (19) 0.2755 (4) 0.0313 (8)
O2 0.08451 (16) −0.01536 (18) 0.2757 (5) 0.0293 (8)
O3 0.19907 (18) −0.08530 (18) 0.2798 (5) 0.0309 (8)
O5 0.09671 (19) 0.13575 (18) 0.0242 (4) 0.0342 (9)
H51 0.0932 0.1865 0.0259 0.051*
O4 0.2318 (2) 0.1628 (2) 0.0360 (4) 0.0355 (10)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.035 (3) 0.017 (2) 0.035 (3) −0.002 (2) −0.001 (4) −0.004 (3)
C2 0.020 (2) 0.021 (3) 0.028 (2) 0.0022 (16) 0.001 (3) 0.002 (4)
C3 0.025 (3) 0.021 (2) 0.042 (3) −0.0068 (19) 0.000 (4) 0.003 (3)
C4 0.042 (3) 0.016 (3) 0.035 (3) −0.001 (2) −0.003 (5) 0.000 (3)
C5 0.040 (3) 0.014 (2) 0.036 (3) −0.014 (2) −0.004 (4) −0.001 (4)
C6 0.022 (2) 0.026 (3) 0.022 (2) −0.0025 (18) −0.006 (5) 0.003 (3)
N1 0.0198 (18) 0.020 (2) 0.0341 (18) −0.0058 (16) 0.006 (4) −0.001 (4)
N2 0.024 (2) 0.022 (2) 0.035 (2) 0.0103 (15) −0.005 (3) −0.002 (3)
N3 0.0137 (19) 0.029 (2) 0.050 (2) −0.0035 (15) 0.003 (3) 0.002 (3)
O1 0.0253 (18) 0.0256 (17) 0.043 (2) −0.0062 (15) 0.000 (3) −0.006 (3)
O2 0.0124 (15) 0.0231 (18) 0.052 (2) 0.0030 (13) 0.004 (3) 0.004 (3)
O3 0.0130 (16) 0.0233 (17) 0.056 (2) 0.0049 (13) −0.002 (3) −0.007 (3)
O5 0.0233 (17) 0.0205 (19) 0.059 (2) 0.0042 (14) 0.004 (3) 0.000 (3)
O4 0.0253 (19) 0.0212 (18) 0.060 (3) 0.0027 (15) −0.003 (3) −0.005 (3)

Geometric parameters (Å, °)

C1—O4 1.207 (6) C5—H5 0.93
C1—O5 1.319 (6) C6—N3 1.303 (5)
C1—C2 1.487 (6) C6—N2 1.375 (6)
C2—C3 1.354 (6) N1—O1 1.225 (4)
C2—C6 1.431 (5) N1—O2 1.255 (4)
C3—C4 1.417 (6) N1—O3 1.281 (4)
C3—H3 0.93 N2—H2 0.86
C4—C5 1.347 (8) N3—H3A 0.86
C4—H4 0.93 N3—H3B 0.86
C5—N2 1.359 (6) O5—H51 0.82
O4—C1—O5 123.4 (4) N2—C5—H5 119.4
O4—C1—C2 123.5 (4) N3—C6—N2 118.2 (4)
O5—C1—C2 113.0 (4) N3—C6—C2 126.9 (5)
C3—C2—C6 120.2 (4) N2—C6—C2 114.8 (4)
C3—C2—C1 121.0 (4) O1—N1—O2 121.4 (4)
C6—C2—C1 118.8 (4) O1—N1—O3 121.4 (3)
C2—C3—C4 122.5 (4) O2—N1—O3 117.2 (3)
C2—C3—H3 118.8 C5—N2—C6 124.5 (4)
C4—C3—H3 118.8 C5—N2—H2 117.8
C5—C4—C3 116.8 (4) C6—N2—H2 117.8
C5—C4—H4 121.6 C6—N3—H3A 120
C3—C4—H4 121.6 C6—N3—H3B 120
C4—C5—N2 121.2 (4) H3A—N3—H3B 120
C4—C5—H5 119.4 C1—O5—H51 109.5
O4—C1—C2—C3 177.5 (7) C3—C2—C6—N3 −178.8 (9)
O5—C1—C2—C3 −4.4 (11) C1—C2—C6—N3 0.4 (17)
O4—C1—C2—C6 −1.6 (13) C3—C2—C6—N2 0.3 (14)
O5—C1—C2—C6 176.4 (9) C1—C2—C6—N2 179.5 (7)
C6—C2—C3—C4 −0.6 (12) C4—C5—N2—C6 0.0 (14)
C1—C2—C3—C4 −179.7 (7) N3—C6—N2—C5 179.1 (8)
C2—C3—C4—C5 0.5 (11) C2—C6—N2—C5 −0.1 (15)
C3—C4—C5—N2 −0.3 (12)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2···O3i 0.86 1.97 2.803 (4) 162
N3—H3A···O2i 0.86 2.18 3.017 (4) 165
N3—H3A···O2ii 0.86 2.43 2.967 (4) 121
N3—H3B···O4 0.86 2.10 2.716 (5) 128
O5—H51···O3iii 0.82 1.85 2.670 (4) 180
C4—H4···O1iv 0.93 2.42 3.197 (6) 141
C5—H5···O4v 0.93 2.30 3.216 (6) 167

Symmetry codes: (i) y+1/2, −x, z−1/4; (ii) −y+1/2, x, z−1/4; (iii) −y, −x+1/2, z−1/4; (iv) y, x−1/2, z−1/4; (v) −x+1/2, y−1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LX2193).

References

  1. Akriche, S. & Rzaigui, M. (2007). Acta Cryst. E63, o3460.
  2. Athimoolam, S., Anitha, K. & Rajaram, R. K. (2005). Acta Cryst. E61, o2553–o2555.
  3. Athimoolam, S. & Rajaram, R. K. (2005a). Acta Cryst. E61, o2674–o2676.
  4. Athimoolam, S. & Rajaram, R. K. (2005b). Acta Cryst. E61, o2764–o2767.
  5. Berrah, F., Ouakkaf, A., Bouacida, S. & Roisnel, T. (2011a). Acta Cryst. E67, o953–o954. [DOI] [PMC free article] [PubMed]
  6. Berrah, F., Ouakkaf, A., Bouacida, S. & Roisnel, T. (2011b). Acta Cryst. E67, o525–o526. [DOI] [PMC free article] [PubMed]
  7. Brandenburg, K. & Berndt, M. (2001). DIAMOND Crystal Impact, Bonn, Germany.
  8. Bruker (2006). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  9. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.
  10. Chen, L.-Z. (2009). Acta Cryst. E65, o2350. [DOI] [PMC free article] [PubMed]
  11. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  12. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  13. Giantsidis, J. & Turnbull, M. M. (2000). Acta Cryst. C56, 334–335. [DOI] [PubMed]
  14. Jebas, S. R., Balasubramanian, T. & Light, M. E. (2006). Acta Cryst. E62, o3481–o3482.
  15. Sheldrick, G. M. (2002). SADABS Bruker AXS Inc., Madison, Wisconsin, USA
  16. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  17. Slouf, M. (2001). Acta Cryst. E57, o61–o62. [DOI] [PubMed]
  18. Ye, H.-Y., Chen, L.-Z. & Xiong, R.-G. (2010). Acta Cryst. B66, 387–395. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811027978/lx2193sup1.cif

e-67-o2057-sup1.cif (19.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811027978/lx2193Isup2.hkl

e-67-o2057-Isup2.hkl (73.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811027978/lx2193Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES