Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jul 23;67(Pt 8):o2071. doi: 10.1107/S1600536811028133

2-(4-Chloro­phen­yl)-5-(cyclo­hex-1-en-1-yl)-3-(4-methyl­phenyl­sulfon­yl)-1-phenyl­imidazolidin-4-one

S Ranjith a, K SakthiMurugesan a, A SubbiahPandi a,*, K Namitharan b, K Pitchumani b
PMCID: PMC3213516  PMID: 22091095

Abstract

In the title compound, C28H27ClN2O3S, the central imidazolidine ring adopts an envelope conformation with the C atom bearing the chloro­phenyl ring at the flap. The geometry around the S atom is distorted tetra­hedral. Three methyl­ene groups of the cyclo­hexene ring are disordered over two sets of sites [site occupancies = 0.562 (10) and 0.438 (10)]. The crystal packing is stabilized by C—H⋯π inter­actions.

Related literature

For the biological activity of sulfonamides, see: Zareef et al. (2007); Chohan & Shad (2008); Pomarnacka & Kozlarska-Kedra (2003); Nieto et al. (2005); Wang et al. (1995). For a related structure, see: Ranjith et al. (2011). For puckering parameters, see: Cremer & Pople (1975). For ring asymmetry parameters, see: Nardelli et al. (1983).graphic file with name e-67-o2071-scheme1.jpg

Experimental

Crystal data

  • C28H27ClN2O3S

  • M r = 507.03

  • Monoclinic, Inline graphic

  • a = 10.9974 (3) Å

  • b = 13.4095 (4) Å

  • c = 17.4434 (5) Å

  • β = 105.103 (2)°

  • V = 2483.52 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 293 K

  • 0.25 × 0.22 × 0.19 mm

Data collection

  • Bruker APEXII CCD area detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.934, T max = 0.950

  • 32488 measured reflections

  • 7366 independent reflections

  • 4844 reflections with I > 2σ(I)

  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047

  • wR(F 2) = 0.139

  • S = 1.01

  • 7366 reflections

  • 346 parameters

  • 4 restraints

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.33 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811028133/bt5573sup1.cif

e-67-o2071-sup1.cif (27.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811028133/bt5573Isup2.hkl

e-67-o2071-Isup2.hkl (353.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811028133/bt5573Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg2 and Cg4 are the centroids of the C2–C7 and C15–C20 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1ACg4i 0.96 2.91 3.490 (3) 120
C11—H11⋯Cg2i 0.93 2.86 3.612 (2) 139

Symmetry code: (i) Inline graphic.

Acknowledgments

SR and ASP thank Dr Babu Varghese, SAIF, IIT, Chennai, India, for the data collection.

supplementary crystallographic information

Comment

Sulfonamides have widely been recognized for their wide variety of pharmacological activities such as antibacterial, antitumor, anti-carbonic anhydrase, diuretic, hypoglycaemic, antithyroid and protease inhibitory activity. Sulfonamides have also been used clinically as antimalarial agents (Zareef et al., 2007), particularly sulfadiazine and sulfadoxine. Due to their significant pharmacology applications and widespread use in medicine, these compounds have also gained attention in bioinorganic and metal-based (Chohan et al., 2008) drug chemistry. Sulfonamide derivatives are well known drugs and are used to control diseases caused by bacterial infections. Benzene sulfonamide derivatives are known to exhibit anticancer and HIV activities (Pomarnacka & Kozlarska-Kedra, 2003) and antibacterial activities (Nieto et al., 2005). Imidazolidine compounds are important intermediates and building blocks in the construction of various biologically active compounds (Wang et al., 1995). Against this background, and in order to obtain detailed information on molecular conformations in the solid state, an X-ray study of the title compound was carried out.

X-Ray analysis confirms the molecular structure and atom connectivity as illustrated in Fig. 1. The geometry around the S atom is distorted tetrahedral, comprising two O atoms of the sulfonyl group, a C atom of a phenyl ring and the imidazolidine N atom. The S–O, S–C, and S–N distances are 1.416 (2), 1.747 (2) and 1.677 (2) Å, respectively, these are comparable as observed in similar structures (Ranjith et al., 2011). The atom Cl1 is deviated by 0.136 (1)Å from the leastsquares plane of the rings C9–C14. The S atom exhibits significant deviation from that of a regular tetrahedron, with the largest deviations for the O–S–O [O1–S1–O2 121.2 (9)°] and O–S–N angles [O1–S1–N1 106.4 (7)°]. The widening of the angles may be due to repulsive interactions between the two short S=O bonds, similar to what is observed in related structures (Ranjith et al., 2011).

The imidazolidine ring adopts envelope conformation, with the puckering parameters q2 and φ (Cremer & Pople, 1975) and the smallest displacement asymmetric parameters,Δ, (Nardelli et al., 1983) as follows: q2=0.1230 (17) Å, φ=211.7 (8)°, Δs(C8)=1.50 (17) and the cyclohexane ring adopts half-chair conformation, in addition to with the puckering parameters q2 and φ (Cremer & Pople, 1975) and the smallest displacement asymmetric parameters,Δ, (Nardelli et al., 1983) as follows: q2=0.399 (7) Å, φ=127.2 (8)°, Δs(C24)= 18.4 (7). In the crystal, the molecules form layers that are linked by π···π stacking interactions between the imidazolidine and benzene [C9—C14] rings [centroid–centroid distances = 3.7406 (9) Å].

Experimental

4-Toluenesulfonyl azide (1.3 mmol), 1-ethynyl cyclohexene (1.2 mmol), 4-chlorophenyl N-phenylnitrone (1.0 mmol) and triethylamine (2 mmol) were successively added to Cu1—Y zeolite (30 mg) in dichloromethane under N2 atmosphere. After stirring at room temperature for the 6 h, the mixture was diluted with dichloromethane. After removing the catalyst by filtration, followed by solvent evaporation, the resulting crude product was finally purified by column chromatography (silica gel). Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a solution of the title compound in acetone at room temperature.

Refinement

Three methylene groups of the cyclohexane ring are disordered over two positions (C25/C25', C26/C26' and C27/C27') with refined occupancies of 0.562 (10) and 0.438 (10). The corresponding bond distances involving the disordered atoms were restrained to be equal. All H atoms were fixed geometrically and allowed to ride on their parent C atoms, with C—H distances fixed in the range 0.93–0.97 Å with Uiso(H) = 1.5Ueq(C) for methyl H 1.2Ueq(C) for other H atoms.

Figures

Fig. 1.

Fig. 1.

The structure of showing the atom-numbering scheme. The displacement ellipsoids are drawn at the 30% probability level. The disordered atoms are omitted for clarity.

Crystal data

C28H27ClN2O3S F(000) = 1064
Mr = 507.03 Dx = 1.356 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 7366 reflections
a = 10.9974 (3) Å θ = 2.0–30.4°
b = 13.4095 (4) Å µ = 0.27 mm1
c = 17.4434 (5) Å T = 293 K
β = 105.103 (2)° Block, white crystalline
V = 2483.52 (12) Å3 0.25 × 0.22 × 0.19 mm
Z = 4

Data collection

Bruker APEXII CCD area detector diffractometer 7366 independent reflections
Radiation source: fine-focus sealed tube 4844 reflections with I > 2σ(I)
graphite Rint = 0.034
ω and φ scans θmax = 30.4°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −15→15
Tmin = 0.934, Tmax = 0.950 k = −18→17
32488 measured reflections l = −24→24

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047 H-atom parameters constrained
wR(F2) = 0.139 w = 1/[σ2(Fo2) + (0.0638P)2 + 0.6285P] where P = (Fo2 + 2Fc2)/3
S = 1.01 (Δ/σ)max < 0.001
7366 reflections Δρmax = 0.30 e Å3
346 parameters Δρmin = −0.33 e Å3
4 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0016 (5)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 0.3220 (3) 0.3780 (3) −0.10334 (16) 0.0984 (11)
H1A 0.2431 0.3432 −0.1139 0.148*
H1B 0.3896 0.3306 −0.0959 0.148*
H1C 0.3229 0.4206 −0.1474 0.148*
C2 0.3385 (2) 0.4401 (2) −0.02909 (13) 0.0630 (6)
C3 0.3809 (2) 0.39928 (18) 0.04443 (15) 0.0657 (6)
H3 0.4018 0.3319 0.0488 0.079*
C4 0.3938 (2) 0.45477 (15) 0.11277 (12) 0.0534 (5)
H4 0.4217 0.4250 0.1624 0.064*
C5 0.36483 (15) 0.55480 (14) 0.10642 (10) 0.0399 (4)
C6 0.32259 (19) 0.59833 (18) 0.03261 (11) 0.0551 (5)
H6 0.3030 0.6659 0.0279 0.066*
C7 0.3098 (2) 0.5397 (2) −0.03421 (12) 0.0683 (7)
H7 0.2809 0.5687 −0.0841 0.082*
C8 0.15703 (15) 0.68904 (13) 0.20985 (9) 0.0357 (3)
H8 0.1924 0.7545 0.2284 0.043*
C9 0.08827 (14) 0.69380 (12) 0.12235 (9) 0.0335 (3)
C10 0.01018 (16) 0.61671 (13) 0.08682 (10) 0.0393 (4)
H10 −0.0062 0.5645 0.1178 0.047*
C11 −0.04370 (16) 0.61627 (14) 0.00593 (10) 0.0428 (4)
H11 −0.0969 0.5646 −0.0176 0.051*
C12 −0.01773 (16) 0.69310 (14) −0.03927 (9) 0.0420 (4)
C13 0.05538 (18) 0.77282 (14) −0.00504 (10) 0.0467 (4)
H13 0.0696 0.8257 −0.0361 0.056*
C14 0.10737 (17) 0.77306 (13) 0.07623 (10) 0.0412 (4)
H14 0.1557 0.8271 0.1001 0.049*
C15 −0.02845 (16) 0.69953 (14) 0.26500 (9) 0.0392 (4)
C16 −0.05654 (17) 0.79523 (14) 0.23440 (10) 0.0450 (4)
H16 −0.0010 0.8280 0.2109 0.054*
C17 −0.1665 (2) 0.84149 (17) 0.23890 (12) 0.0558 (5)
H17 −0.1839 0.9057 0.2188 0.067*
C18 −0.2509 (2) 0.79421 (19) 0.27261 (12) 0.0606 (6)
H18 −0.3255 0.8255 0.2744 0.073*
C19 −0.22360 (19) 0.70099 (19) 0.30332 (12) 0.0585 (5)
H19 −0.2799 0.6691 0.3267 0.070*
C20 −0.11374 (18) 0.65312 (16) 0.30031 (11) 0.0498 (4)
H20 −0.0965 0.5897 0.3219 0.060*
C21 0.11459 (17) 0.55093 (13) 0.29037 (9) 0.0407 (4)
H21 0.0469 0.5047 0.2652 0.049*
C22 0.23143 (17) 0.52896 (14) 0.26277 (9) 0.0416 (4)
C23 0.14710 (17) 0.53918 (13) 0.37990 (9) 0.0401 (4)
N1 0.25822 (13) 0.61314 (11) 0.22405 (8) 0.0383 (3)
N2 0.08217 (14) 0.65180 (11) 0.26115 (8) 0.0416 (3)
O1 0.48872 (12) 0.58412 (12) 0.25198 (8) 0.0570 (4)
O2 0.38986 (13) 0.72903 (10) 0.17229 (9) 0.0552 (3)
O3 0.29106 (14) 0.45255 (10) 0.27358 (8) 0.0552 (3)
S1 0.38901 (4) 0.62668 (4) 0.19262 (2) 0.04154 (13)
Cl1 −0.07606 (6) 0.68766 (5) −0.14158 (3) 0.06699 (18)
C24 0.1128 (2) 0.45825 (15) 0.41165 (11) 0.0495 (4)
H24 0.0584 0.4123 0.3803 0.059*
C28 0.2297 (2) 0.61722 (17) 0.42755 (11) 0.0626 (6)
H28A 0.1981 0.6823 0.4074 0.075*
H28B 0.3137 0.6102 0.4202 0.075*
C25 0.1632 (15) 0.4414 (10) 0.4994 (2) 0.062 (3) 0.562 (10)
H25A 0.1889 0.3723 0.5081 0.074* 0.562 (10)
H25B 0.0956 0.4525 0.5247 0.074* 0.562 (10)
C26 0.2734 (7) 0.5069 (4) 0.5394 (3) 0.070 (2) 0.562 (10)
H26A 0.2921 0.4992 0.5966 0.083* 0.562 (10)
H26B 0.3475 0.4881 0.5225 0.083* 0.562 (10)
C27 0.2384 (8) 0.6130 (3) 0.5167 (2) 0.0693 (18) 0.562 (10)
H27A 0.3023 0.6585 0.5460 0.083* 0.562 (10)
H27B 0.1582 0.6300 0.5268 0.083* 0.562 (10)
C25' 0.1412 (18) 0.4256 (11) 0.4969 (3) 0.052 (2) 0.438 (10)
H25C 0.1931 0.3661 0.5050 0.062* 0.438 (10)
H25D 0.0637 0.4109 0.5113 0.062* 0.438 (10)
C26' 0.2104 (10) 0.5104 (8) 0.5469 (5) 0.075 (3) 0.438 (10)
H26C 0.1488 0.5540 0.5605 0.090* 0.438 (10)
H26D 0.2621 0.4829 0.5961 0.090* 0.438 (10)
C27' 0.2928 (6) 0.5719 (8) 0.5090 (3) 0.092 (4) 0.438 (10)
H27C 0.3623 0.5306 0.5035 0.111* 0.438 (10)
H27D 0.3281 0.6259 0.5450 0.111* 0.438 (10)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0785 (18) 0.152 (3) 0.0741 (17) −0.0432 (18) 0.0375 (14) −0.0598 (18)
C2 0.0472 (11) 0.0952 (18) 0.0520 (12) −0.0222 (12) 0.0228 (9) −0.0241 (12)
C3 0.0725 (15) 0.0610 (13) 0.0723 (15) −0.0144 (11) 0.0345 (12) −0.0184 (11)
C4 0.0604 (12) 0.0556 (12) 0.0468 (10) −0.0013 (10) 0.0186 (9) 0.0022 (9)
C5 0.0349 (8) 0.0528 (10) 0.0340 (8) −0.0017 (7) 0.0124 (6) 0.0003 (7)
C6 0.0549 (11) 0.0706 (14) 0.0416 (10) 0.0078 (10) 0.0159 (8) 0.0099 (9)
C7 0.0568 (12) 0.117 (2) 0.0324 (9) −0.0009 (13) 0.0133 (9) 0.0025 (11)
C8 0.0349 (8) 0.0439 (9) 0.0279 (7) −0.0005 (7) 0.0077 (6) −0.0007 (6)
C9 0.0319 (7) 0.0399 (9) 0.0290 (7) 0.0002 (6) 0.0082 (6) 0.0011 (6)
C10 0.0420 (9) 0.0409 (9) 0.0345 (8) −0.0053 (7) 0.0091 (7) 0.0022 (7)
C11 0.0399 (9) 0.0457 (10) 0.0391 (9) −0.0019 (7) 0.0037 (7) −0.0053 (7)
C12 0.0423 (9) 0.0531 (10) 0.0276 (7) 0.0079 (8) 0.0039 (6) 0.0011 (7)
C13 0.0529 (10) 0.0473 (10) 0.0382 (9) −0.0002 (8) 0.0085 (8) 0.0112 (7)
C14 0.0435 (9) 0.0398 (9) 0.0382 (8) −0.0059 (7) 0.0068 (7) 0.0023 (7)
C15 0.0369 (8) 0.0552 (10) 0.0246 (7) 0.0012 (7) 0.0062 (6) −0.0038 (7)
C16 0.0458 (10) 0.0537 (11) 0.0356 (8) 0.0012 (8) 0.0108 (7) −0.0030 (7)
C17 0.0557 (12) 0.0637 (13) 0.0466 (10) 0.0147 (10) 0.0110 (9) −0.0020 (9)
C18 0.0450 (11) 0.0851 (16) 0.0516 (11) 0.0149 (11) 0.0121 (9) −0.0055 (11)
C19 0.0423 (10) 0.0897 (17) 0.0468 (10) −0.0004 (10) 0.0174 (8) 0.0024 (10)
C20 0.0451 (10) 0.0666 (12) 0.0390 (9) 0.0030 (9) 0.0134 (8) 0.0060 (8)
C21 0.0455 (9) 0.0469 (10) 0.0306 (8) −0.0008 (8) 0.0114 (7) 0.0013 (7)
C22 0.0468 (10) 0.0495 (10) 0.0284 (7) 0.0019 (8) 0.0095 (7) 0.0012 (7)
C23 0.0478 (9) 0.0443 (9) 0.0297 (7) 0.0018 (8) 0.0128 (7) 0.0017 (7)
N1 0.0366 (7) 0.0478 (8) 0.0314 (6) 0.0043 (6) 0.0103 (5) 0.0039 (6)
N2 0.0430 (8) 0.0506 (8) 0.0350 (7) 0.0067 (7) 0.0169 (6) 0.0086 (6)
O1 0.0382 (7) 0.0846 (10) 0.0426 (7) 0.0081 (7) 0.0006 (5) −0.0051 (7)
O2 0.0499 (8) 0.0530 (8) 0.0662 (9) −0.0085 (6) 0.0217 (7) −0.0033 (7)
O3 0.0656 (9) 0.0516 (8) 0.0523 (8) 0.0137 (7) 0.0225 (7) 0.0076 (6)
S1 0.0334 (2) 0.0542 (3) 0.0366 (2) −0.00127 (18) 0.00827 (16) −0.00333 (18)
Cl1 0.0809 (4) 0.0804 (4) 0.0305 (2) 0.0147 (3) −0.0021 (2) 0.0009 (2)
C24 0.0613 (11) 0.0503 (11) 0.0409 (9) 0.0044 (9) 0.0207 (8) 0.0039 (8)
C28 0.0794 (15) 0.0635 (14) 0.0400 (10) −0.0123 (11) 0.0065 (10) −0.0029 (9)
C25 0.093 (8) 0.054 (4) 0.045 (3) −0.002 (3) 0.030 (3) 0.012 (3)
C26 0.094 (5) 0.076 (3) 0.033 (2) 0.006 (4) 0.006 (3) 0.004 (2)
C27 0.106 (5) 0.064 (3) 0.037 (2) 0.004 (3) 0.016 (2) −0.0115 (18)
C25' 0.064 (5) 0.052 (5) 0.044 (4) 0.006 (3) 0.024 (3) 0.021 (3)
C26' 0.099 (7) 0.090 (5) 0.042 (3) −0.016 (5) 0.029 (4) 0.010 (3)
C27' 0.101 (6) 0.137 (10) 0.036 (3) −0.068 (6) 0.013 (3) −0.004 (4)

Geometric parameters (Å, °)

C1—C2 1.511 (3) C18—H18 0.9300
C1—H1A 0.9600 C19—C20 1.381 (3)
C1—H1B 0.9600 C19—H19 0.9300
C1—H1C 0.9600 C20—H20 0.9300
C2—C3 1.360 (3) C21—N2 1.457 (2)
C2—C7 1.370 (4) C21—C22 1.514 (2)
C3—C4 1.381 (3) C21—C23 1.517 (2)
C3—H3 0.9300 C21—H21 0.9800
C4—C5 1.376 (3) C22—O3 1.204 (2)
C4—H4 0.9300 C22—N1 1.386 (2)
C5—C6 1.379 (2) C23—C24 1.317 (3)
C5—S1 1.7471 (17) C23—C28 1.489 (3)
C6—C7 1.382 (3) N1—S1 1.6774 (14)
C6—H6 0.9300 O1—S1 1.4173 (13)
C7—H7 0.9300 O2—S1 1.4181 (15)
C8—N2 1.453 (2) C24—C25 1.502 (3)
C8—N1 1.480 (2) C24—C25' 1.502 (3)
C8—C9 1.518 (2) C24—H24 0.9300
C8—H8 0.9800 C28—C27 1.534 (3)
C9—C14 1.382 (2) C28—C27' 1.535 (4)
C9—C10 1.383 (2) C28—H28A 0.9700
C10—C11 1.381 (2) C28—H28B 0.9700
C10—H10 0.9300 C25—C26 1.511 (6)
C11—C12 1.372 (3) C25—H25A 0.9700
C11—H11 0.9300 C25—H25B 0.9700
C12—C13 1.377 (3) C26—C27 1.501 (5)
C12—Cl1 1.7335 (16) C26—H26A 0.9700
C13—C14 1.384 (2) C26—H26B 0.9700
C13—H13 0.9300 C27—H27A 0.9700
C14—H14 0.9300 C27—H27B 0.9700
C15—N2 1.392 (2) C25'—C26' 1.511 (6)
C15—C16 1.393 (3) C25'—H25C 0.9700
C15—C20 1.395 (3) C25'—H25D 0.9700
C16—C17 1.380 (3) C26'—C27' 1.501 (5)
C16—H16 0.9300 C26'—H26C 0.9700
C17—C18 1.375 (3) C26'—H26D 0.9700
C17—H17 0.9300 C27'—H27C 0.9700
C18—C19 1.362 (3) C27'—H27D 0.9700
C2—C1—H1A 109.5 C22—C21—H21 110.1
C2—C1—H1B 109.5 C23—C21—H21 110.1
H1A—C1—H1B 109.5 O3—C22—N1 126.36 (16)
C2—C1—H1C 109.5 O3—C22—C21 126.04 (16)
H1A—C1—H1C 109.5 N1—C22—C21 107.59 (15)
H1B—C1—H1C 109.5 C24—C23—C28 122.96 (16)
C3—C2—C7 118.08 (19) C24—C23—C21 120.13 (17)
C3—C2—C1 121.4 (3) C28—C23—C21 116.58 (15)
C7—C2—C1 120.5 (2) C22—N1—C8 113.30 (13)
C2—C3—C4 122.0 (2) C22—N1—S1 123.83 (12)
C2—C3—H3 119.0 C8—N1—S1 122.82 (11)
C4—C3—H3 119.0 C15—N2—C8 120.95 (14)
C5—C4—C3 119.1 (2) C15—N2—C21 123.20 (14)
C5—C4—H4 120.5 C8—N2—C21 114.10 (13)
C3—C4—H4 120.5 O1—S1—O2 121.21 (9)
C4—C5—C6 120.15 (18) O1—S1—N1 106.48 (8)
C4—C5—S1 119.22 (14) O2—S1—N1 104.40 (8)
C6—C5—S1 120.56 (15) O1—S1—C5 108.78 (9)
C5—C6—C7 118.8 (2) O2—S1—C5 109.16 (9)
C5—C6—H6 120.6 N1—S1—C5 105.69 (7)
C7—C6—H6 120.6 C23—C24—C25 118.8 (4)
C2—C7—C6 121.9 (2) C23—C24—C25' 130.3 (4)
C2—C7—H7 119.1 C23—C24—H24 120.6
C6—C7—H7 119.1 C25—C24—H24 120.6
N2—C8—N1 100.51 (12) C25'—C24—H24 108.9
N2—C8—C9 114.83 (13) C23—C28—C27 114.1 (3)
N1—C8—C9 110.67 (13) C23—C28—C27' 107.5 (4)
N2—C8—H8 110.2 C23—C28—H28A 108.7
N1—C8—H8 110.2 C27—C28—H28A 108.7
C9—C8—H8 110.2 C27'—C28—H28A 136.3
C14—C9—C10 119.00 (14) C23—C28—H28B 108.7
C14—C9—C8 120.42 (14) C27—C28—H28B 108.7
C10—C9—C8 120.51 (14) C27'—C28—H28B 82.4
C11—C10—C9 120.81 (16) H28A—C28—H28B 107.6
C11—C10—H10 119.6 C24—C25—C26 115.0 (5)
C9—C10—H10 119.6 C24—C25—H25A 108.5
C12—C11—C10 119.08 (16) C26—C25—H25A 108.5
C12—C11—H11 120.5 C24—C25—H25B 108.5
C10—C11—H11 120.5 C26—C25—H25B 108.5
C11—C12—C13 121.28 (15) H25A—C25—H25B 107.5
C11—C12—Cl1 118.91 (14) C27—C26—C25 108.0 (8)
C13—C12—Cl1 119.79 (14) C27—C26—H26A 110.1
C12—C13—C14 119.01 (16) C25—C26—H26A 110.1
C12—C13—H13 120.5 C27—C26—H26B 110.1
C14—C13—H13 120.5 C25—C26—H26B 110.1
C9—C14—C13 120.66 (16) H26A—C26—H26B 108.4
C9—C14—H14 119.7 C26—C27—C28 104.3 (3)
C13—C14—H14 119.7 C26—C27—H27A 110.9
N2—C15—C16 120.96 (16) C28—C27—H27A 110.9
N2—C15—C20 120.84 (17) C26—C27—H27B 110.9
C16—C15—C20 118.19 (17) C28—C27—H27B 110.9
C17—C16—C15 120.16 (18) H27A—C27—H27B 108.9
C17—C16—H16 119.9 C24—C25'—C26' 107.2 (6)
C15—C16—H16 119.9 C24—C25'—H25C 110.3
C18—C17—C16 121.0 (2) C26'—C25'—H25C 110.3
C18—C17—H17 119.5 C24—C25'—H25D 110.3
C16—C17—H17 119.5 C26'—C25'—H25D 110.3
C19—C18—C17 119.2 (2) H25C—C25'—H25D 108.5
C19—C18—H18 120.4 C27'—C26'—C25' 115.5 (9)
C17—C18—H18 120.4 C27'—C26'—H26C 108.4
C18—C19—C20 121.1 (2) C25'—C26'—H26C 108.4
C18—C19—H19 119.5 C27'—C26'—H26D 108.4
C20—C19—H19 119.5 C25'—C26'—H26D 108.4
C19—C20—C15 120.3 (2) H26C—C26'—H26D 107.5
C19—C20—H20 119.8 C26'—C27'—C28 116.5 (6)
C15—C20—H20 119.8 C26'—C27'—H27C 108.2
N2—C21—C22 102.71 (13) C28—C27'—H27C 108.2
N2—C21—C23 115.29 (14) C26'—C27'—H27D 108.2
C22—C21—C23 108.38 (14) C28—C27'—H27D 108.2
N2—C21—H21 110.1 H27C—C27'—H27D 107.3
C7—C2—C3—C4 0.8 (3) N2—C8—N1—S1 −169.07 (11)
C1—C2—C3—C4 −178.6 (2) C9—C8—N1—S1 69.17 (16)
C2—C3—C4—C5 −1.0 (3) C16—C15—N2—C8 −14.4 (2)
C3—C4—C5—C6 0.5 (3) C20—C15—N2—C8 166.21 (16)
C3—C4—C5—S1 −176.61 (16) C16—C15—N2—C21 −178.39 (15)
C4—C5—C6—C7 0.2 (3) C20—C15—N2—C21 2.2 (2)
S1—C5—C6—C7 177.24 (16) N1—C8—N2—C15 −177.89 (14)
C3—C2—C7—C6 −0.1 (3) C9—C8—N2—C15 −59.1 (2)
C1—C2—C7—C6 179.3 (2) N1—C8—N2—C21 −12.53 (17)
C5—C6—C7—C2 −0.4 (3) C9—C8—N2—C21 106.25 (16)
N2—C8—C9—C14 140.82 (16) C22—C21—N2—C15 172.55 (14)
N1—C8—C9—C14 −106.26 (18) C23—C21—N2—C15 −69.8 (2)
N2—C8—C9—C10 −42.2 (2) C22—C21—N2—C8 7.56 (18)
N1—C8—C9—C10 70.73 (19) C23—C21—N2—C8 125.21 (15)
C14—C9—C10—C11 2.9 (3) C22—N1—S1—O1 −38.92 (15)
C8—C9—C10—C11 −174.14 (16) C8—N1—S1—O1 143.77 (13)
C9—C10—C11—C12 0.7 (3) C22—N1—S1—O2 −168.25 (14)
C10—C11—C12—C13 −3.4 (3) C8—N1—S1—O2 14.44 (14)
C10—C11—C12—Cl1 175.27 (14) C22—N1—S1—C5 76.66 (15)
C11—C12—C13—C14 2.5 (3) C8—N1—S1—C5 −100.65 (13)
Cl1—C12—C13—C14 −176.16 (15) C4—C5—S1—O1 28.34 (18)
C10—C9—C14—C13 −3.8 (3) C6—C5—S1—O1 −148.76 (15)
C8—C9—C14—C13 173.23 (16) C4—C5—S1—O2 162.56 (15)
C12—C13—C14—C9 1.1 (3) C6—C5—S1—O2 −14.54 (17)
N2—C15—C16—C17 −179.85 (16) C4—C5—S1—N1 −85.66 (16)
C20—C15—C16—C17 −0.4 (2) C6—C5—S1—N1 97.24 (16)
C15—C16—C17—C18 −0.7 (3) C28—C23—C24—C25 −2.5 (9)
C16—C17—C18—C19 1.3 (3) C21—C23—C24—C25 170.6 (9)
C17—C18—C19—C20 −0.7 (3) C28—C23—C24—C25' 1.8 (12)
C18—C19—C20—C15 −0.4 (3) C21—C23—C24—C25' 174.9 (12)
N2—C15—C20—C19 −179.59 (17) C24—C23—C28—C27 −17.9 (4)
C16—C15—C20—C19 1.0 (3) C21—C23—C28—C27 168.7 (3)
N2—C21—C22—O3 −179.64 (17) C24—C23—C28—C27' 15.9 (5)
C23—C21—C22—O3 57.9 (2) C21—C23—C28—C27' −157.5 (4)
N2—C21—C22—N1 1.29 (17) C23—C24—C25—C26 −14.2 (17)
C23—C21—C22—N1 −121.16 (15) C25'—C24—C25—C26 −178 (9)
N2—C21—C23—C24 143.30 (18) C24—C25—C26—C27 50.9 (15)
C22—C21—C23—C24 −102.3 (2) C25—C26—C27—C28 −67.4 (9)
N2—C21—C23—C28 −43.1 (2) C23—C28—C27—C26 52.2 (7)
C22—C21—C23—C28 71.3 (2) C27'—C28—C27—C26 −32.6 (5)
O3—C22—N1—C8 171.37 (16) C23—C24—C25'—C26' 6(2)
C21—C22—N1—C8 −9.56 (18) C25—C24—C25'—C26' 24 (7)
O3—C22—N1—S1 −6.2 (3) C24—C25'—C26'—C27' −32.2 (19)
C21—C22—N1—S1 172.90 (11) C25'—C26'—C27'—C28 54.7 (17)
N2—C8—N1—C22 13.37 (17) C23—C28—C27'—C26' −42.8 (12)
C9—C8—N1—C22 −108.40 (15) C27—C28—C27'—C26' 64.7 (9)

Hydrogen-bond geometry (Å, °)

Cg2 and Cg4 are the centroids of the C2–C7 and C15–C20 rings, respectively.
D—H···A D—H H···A D···A D—H···A
C1—H1A···Cg4i 0.96 2.91 3.490 (3) 120
C11—H11···Cg2i 0.93 2.86 3.612 (2) 139

Symmetry codes: (i) −x, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5573).

References

  1. Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Chohan, Z. H. & Shad, H. A. (2008). J. Enz. Inhib. Med. Chem. 23, 369–379. [DOI] [PubMed]
  3. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  4. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  5. Nardelli, M. (1983). Acta Cryst. C39, 1141–1142.
  6. Nieto, M. J., Alovero, F. L., Manzo, R. H. & Mazzieri, M. R. (2005). Eur. J. Med. Chem. 40, 361–369. [DOI] [PubMed]
  7. Pomarnacka, E. & Kozlarska-Kedra, I. (2003). Farmaco, 58, 423–429. [DOI] [PubMed]
  8. Ranjith, S., SubbiahPandi, A., Namitharan, K. & Pitchumani, K. (2011). Acta Cryst. E67, o843. [DOI] [PMC free article] [PubMed]
  9. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  12. Wang, W., Liang, T. C., Zheng, M. & Gao, X. (1995). Tetrahedron Lett. 36, 1181–1184.
  13. Zareef, M., Iqbal, R., De Dominguez, N. G., Rodrigues, J., Zaidi, J. H., Arfan, M. & Supuran, C. T. (2007). J. Enz. Inhib. Med. Chem. 22, 301–308. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811028133/bt5573sup1.cif

e-67-o2071-sup1.cif (27.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811028133/bt5573Isup2.hkl

e-67-o2071-Isup2.hkl (353.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811028133/bt5573Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES