Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jul 23;67(Pt 8):o2075–o2076. doi: 10.1107/S1600536811027371

4-Phenyl-1-(prop-2-yn-1-yl)-1H-1,5-benzodiazepin-2(3H)-one

Mohamed Loughzail a, José A Fernandes b, Abdesselam Baouid a,*, Mohamed Essaber a, José A S Cavaleiro c, Filipe A Almeida Paz b,*
PMCID: PMC3213519  PMID: 22091098

Abstract

4-Phenyl-1H-1,5-benzodiazepin-2(3H)-one reacts in the pres­ence of a concentrated aqueous solution of sodium hydroxide and a quaternary ammonium salt (as catalyst) in benzene (phase transfer catalysis) with propargyl bromide, affording the title benzodiazepine derivative, C18H14N2O. In the mol­ecule, the mean plane of the propargyl substituent is almost perpendicular with that of the amide group [dihedral angle = 87.81 (8)°]. In the crystal, the molecules are linked by C—H⋯O and C—H⋯N inter­actions.

Related literature

For general background to applications of benzodiazepines, see: Ahmed et al. (1983); Bird (1996); Di Braccio et al. (1990, 2001); Goetzke et al. (1983); Kavita et al. (1988); Sieghart & Schuster (1984); Wolff (1996). For examples of benzodiazepines used as medicine, see: Wolff (1996). For the pharmacological effects of benzodiazepines, see: Meldrum & Chapman (1986). For examples of synthetic pathways of new benzodiazepines, see: Aatif et al. (2000); Baouid et al. (2001); Boudina et al. (2007); Nardi et al. (1973). For previous work from our groups on organic crystals, see: Fernandes et al. (2011); Amarante, Figueiredo et al. (2009); Amarante, Gonçalves & Almeida Paz (2009); Paz & Klinowski (2003); Paz et al. (2002).graphic file with name e-67-o2075-scheme1.jpg

Experimental

Crystal data

  • C18H14N2O

  • M r = 274.31

  • Monoclinic, Inline graphic

  • a = 8.2574 (14) Å

  • b = 18.961 (3) Å

  • c = 9.0914 (15) Å

  • β = 102.962 (4)°

  • V = 1387.1 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 150 K

  • 0.12 × 0.08 × 0.04 mm

Data collection

  • Bruker X8 Kappa CCD APEX II diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997) T min = 0.990, T max = 0.997

  • 11049 measured reflections

  • 5228 independent reflections

  • 3621 reflections with I > 2σ(I)

  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.052

  • wR(F 2) = 0.143

  • S = 1.05

  • 5228 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT-Plus (Bruker, 2005); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 2009); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811027371/tk2762sup1.cif

e-67-o2075-sup1.cif (18.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811027371/tk2762Isup2.hkl

e-67-o2075-Isup2.hkl (256KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811027371/tk2762Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯O1i 0.99 2.14 3.1074 (15) 166
C3—H3⋯N2ii 0.95 2.58 3.4269 (18) 149

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

We are grateful to the Fundação para a Ciência e a Tecnologia (FCT, Portugal) for their general financial support, for the post-doctoral research grant No. SFRH/BPD/63736/2009 (to JAF) and for specific funding toward the purchase of the single-crystal diffractometer.

supplementary crystallographic information

Comment

Benzodiazepine derivatives are an important class of heterocyclic compounds in the field of drugs, pharmaceuticals and synthetic organic chemistry (Bird, 1996; Wolff, 1996), as they show antiviral (Di Braccio et al., 2001), analgesic (Di Braccio et al., 1990), and antipsychotic (Kavita et al., 1988) activities. These compounds are used worldwide as anticonvulsant agents (Sieghart & Schuster, 1984) or as sedative or hypnotics (Goetzke et al., 1983; Ahmed et al., 1983). Examples of well known diazepines are Alprazolam, Diazepam and Flunitrazepam (Wolff, 1996). Their pharmacological effects come from the activation of the benzodiazepine receptor which interacts with the GABA recognition site (Meldrum & Chapman, 1986). Research in this area is highly active being directed towards the synthesis of compounds with enhanced pharmacological activity. Following the research efforts from some of us concerning novel synthetic pathways of new benzodiazepines (Aatif et al., 2000; Baouid et al., 2001; Boudina et al., 2007), and our interest on the structural features of organic crystals (Fernandes et al., 2011; Amarante, Figueiredo et al., 2009; Amarante, Gonçalves & Almeida Paz , 2009; Paz & Klinowski, 2003; Paz et al., 2002), here we wish to report the synthesis via phase transfer catalysis and the crystallographic studies of the title compound (I).

The asymmetric unit is composed of a whole molecular moiety of I (Fig. 1). All atoms are distributed over four medium planes (see Table 1 for details), which converge in the diazepine ring. The plane of the substituent aromatic ring is extended to the imine group from the diazepine moiety (plane A) and subtends an angle of 71.78 (4)° with the amide plane (C). The plane of the benzo ring (B) subtends, on the other hand, two almost similar angles with the previously described planes [41.76 (4)° with plane A and 40.75 (4)° with plane C]. The plane of the propargyl substituent (D) is almost perpendicular with that of the amide group [87.81 (8)°].

The crystal packing (Fig. 2) features weak supramolecular interactions (see Table 2 for details), namely the C—H and CH2 groups of the propargyl moiety interact with N2 from the imine and O1 from the amide of neighbouring molecules, respectively.

Experimental

Melting points were taken in an open capillary tube on a Buchi 510 apparatus and are uncorrected. The FT—IR spectrum was obtained from KBr pellets using a Bruker Tensor 27 spectrophotometer. NMR Spectra were recorded with the following instruments: 1H, Bruker AC-300; 13C, Bruker AC-75. TMS was used as an internal reference. Mass spectra were recorded using a Jeol JMS DX 300 instrument. Column chromatography was carried out using E-Merck silica gel 60F254. All reagents were purchased from commercial sources and were used without further purification.

The precursor, 4-phenyl-2,3-dihydro-1H-1,5-benzodiazepin-2-one (II), was prepared following literature procedures (Nardi et al., 1973) by refluxing o-phenylenediamine and ethyl benzoylacetate for 2 h in xylene.

A mixture of 1 g (4.6 mmol) of II, 0.43 g (2.3 mmol) of benzyltriethylammonium chloride (TBA-Cl) and 3 ml of a 50% sodium hydroxide aqueous solution in benzene (25 ml) was stirred at ambient temperature. After 15 min, propargyl bromide was added slowly. After 6 h of stirring at 298 K, the reaction mixture was diluted with water (30 ml). The organic layer was extracted with benzene (3 × 10 ml), dried over anhydrous sodium sulfate and evaporated under vacuum. The title compound was isolated by column chromatography on silica gel using hexane/ethyl acetate as eluent. The solid product was recrystallized in dichloromethane to give yellow crystals of I. Yield: 96%. Melting point: 438–440 K.

FT–IR (KBr): 3259(m), 3060(w), 2984(m), 1659(vs), 1602(s), 1586(w), 1570(m), 1496(w), 1479(s), 1452(s), 1431(m), 1379(s), 1362(w), 1321(w), 1307(m), 1293(w), 1279(m), 1262(m), 1211(m), 1162(w), 1014(m), 958(m), 774(s), 688(m), 662(w), 639(w), 598(m), 484(w), 426(w) cm-1. 1H NMR (300 MHz, CDCl3): 7.25-8.14 (9H, Ar-H), 4.19 and 4.27 (AB system, d, J= 17.7 Hz, 2H, N-CH2-C), 3.04 and 4.76 (AB system, d, J=12 Hz, 2H, CH2-CO-N), 2.32 (t, J= 2.25 Hz, 1H, HC≡C) ppm.13C NMR (75 MHz, CDCl3): 165 (1C, CO), 160.0 (1C, Ph-C=N), 140.9, 136.9, 133.3, 130.5, 128.1, 127.1, 126.7, 125.7, 125.1, 120.9 (12C, Ar-C), 78.5 (1C, HC≡ C), 71.9 (1C, HC≡C), 39.1 (1C, CH2-CO-N), 36.9 (1C, N-CH2-C) ppm. MS (EI, m/z): 275 [M+H]+.

Refinement

Hydrogen atoms bound to carbon were placed at their idealized positions and were included in the final structural model in riding-motion approximation with C—H = 0.95 Å (aromatic and acetylenic), and C—H = 0.99 Å (aliphatic —CH2—). The isotropic thermal displacement parameters for these atoms were fixed at 1.2×Ueq of the respective parent carbon atom.

Figures

Fig. 1.

Fig. 1.

Asymmetric unit of the title compound showing all non-hydrogen atoms represented as thermal ellipsoids drawn at the 50% probability level and hydrogen atoms as small spheres with arbitrary radii.

Fig. 2.

Fig. 2.

Crystal packing of the title compound viewed in perspective along the [100] direction of the unit cell. C—H···(N,O) weak hydrogen bonds are represented as dashed green lines. H-atoms not involved in hydrogen bonding interactions have been omitted for clarity.

Crystal data

C18H14N2O F(000) = 576
Mr = 274.31 Dx = 1.314 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 2335 reflections
a = 8.2574 (14) Å θ = 2.5–32.7°
b = 18.961 (3) Å µ = 0.08 mm1
c = 9.0914 (15) Å T = 150 K
β = 102.962 (4)° Block, yellow
V = 1387.1 (4) Å3 0.12 × 0.08 × 0.04 mm
Z = 4

Data collection

Bruker X8 Kappa CCD APEX II diffractometer 5228 independent reflections
Radiation source: fine-focus sealed tube 3621 reflections with I > 2σ(I)
graphite Rint = 0.034
ω / φ scans θmax = 33.1°, θmin = 3.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 1997) h = −12→11
Tmin = 0.990, Tmax = 0.997 k = −24→29
11049 measured reflections l = −10→13

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0689P)2 + 0.095P] where P = (Fo2 + 2Fc2)/3
5228 reflections (Δ/σ)max < 0.001
190 parameters Δρmax = 0.45 e Å3
0 restraints Δρmin = −0.25 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.81747 (12) 0.20787 (5) 0.66080 (10) 0.01806 (19)
N2 0.80660 (13) 0.05512 (5) 0.73647 (10) 0.0212 (2)
O1 0.73372 (11) 0.20477 (5) 0.40627 (9) 0.0263 (2)
C1 0.92473 (14) 0.26835 (6) 0.64614 (12) 0.0203 (2)
H1A 1.0213 0.2687 0.7333 0.024*
H1B 0.9675 0.2624 0.5535 0.024*
C2 0.83874 (16) 0.33625 (6) 0.63915 (12) 0.0247 (2)
C3 0.7724 (2) 0.39109 (7) 0.63764 (16) 0.0338 (3)
H3 0.7187 0.4355 0.6364 0.041*
C4 0.72159 (14) 0.18209 (6) 0.52947 (11) 0.0191 (2)
C5 0.60888 (14) 0.12224 (6) 0.54917 (13) 0.0218 (2)
H5A 0.5294 0.1118 0.4527 0.026*
H5B 0.5453 0.1343 0.6260 0.026*
C6 0.72038 (14) 0.05952 (6) 0.59981 (12) 0.0197 (2)
C7 0.73684 (14) 0.00310 (6) 0.49079 (12) 0.0203 (2)
C8 0.84549 (16) −0.05308 (6) 0.53927 (14) 0.0250 (2)
H8 0.9068 −0.0547 0.6410 0.030*
C9 0.86457 (17) −0.10638 (7) 0.44028 (15) 0.0289 (3)
H9 0.9375 −0.1446 0.4751 0.035*
C10 0.77807 (19) −0.10440 (7) 0.29068 (15) 0.0318 (3)
H10 0.7916 −0.1410 0.2231 0.038*
C11 0.67212 (19) −0.04871 (7) 0.24087 (14) 0.0318 (3)
H11 0.6135 −0.0468 0.1383 0.038*
C12 0.65061 (17) 0.00474 (7) 0.34008 (13) 0.0263 (3)
H12 0.5767 0.0426 0.3048 0.032*
C13 0.80668 (15) 0.11000 (6) 0.83976 (12) 0.0206 (2)
C14 0.81461 (17) 0.09009 (6) 0.99013 (13) 0.0265 (3)
H14 0.8139 0.0414 1.0143 0.032*
C15 0.82341 (17) 0.13908 (7) 1.10369 (13) 0.0285 (3)
H15 0.8261 0.1241 1.2039 0.034*
C16 0.82834 (16) 0.21074 (7) 1.07035 (13) 0.0259 (2)
H16 0.8353 0.2449 1.1480 0.031*
C17 0.82299 (15) 0.23177 (6) 0.92394 (12) 0.0221 (2)
H17 0.8267 0.2806 0.9020 0.026*
C18 0.81219 (14) 0.18262 (6) 0.80699 (11) 0.0187 (2)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0243 (5) 0.0140 (4) 0.0163 (4) −0.0031 (4) 0.0055 (3) −0.0011 (3)
N2 0.0281 (5) 0.0145 (4) 0.0223 (4) 0.0000 (4) 0.0083 (4) −0.0004 (3)
O1 0.0319 (5) 0.0288 (5) 0.0172 (3) −0.0007 (4) 0.0036 (3) 0.0012 (3)
C1 0.0248 (5) 0.0163 (5) 0.0207 (4) −0.0036 (4) 0.0071 (4) −0.0004 (4)
C2 0.0341 (6) 0.0196 (5) 0.0213 (5) −0.0056 (5) 0.0083 (4) 0.0002 (4)
C3 0.0461 (8) 0.0222 (6) 0.0355 (6) 0.0045 (6) 0.0145 (6) 0.0060 (5)
C4 0.0209 (5) 0.0165 (5) 0.0192 (4) 0.0034 (4) 0.0033 (4) −0.0012 (4)
C5 0.0213 (5) 0.0176 (5) 0.0258 (5) −0.0010 (4) 0.0038 (4) −0.0033 (4)
C6 0.0227 (5) 0.0138 (5) 0.0241 (5) −0.0023 (4) 0.0082 (4) −0.0015 (4)
C7 0.0241 (5) 0.0146 (5) 0.0242 (5) −0.0042 (4) 0.0092 (4) −0.0029 (4)
C8 0.0265 (6) 0.0189 (5) 0.0310 (5) 0.0004 (4) 0.0094 (4) −0.0032 (5)
C9 0.0323 (6) 0.0204 (6) 0.0379 (6) 0.0021 (5) 0.0162 (5) −0.0042 (5)
C10 0.0422 (8) 0.0240 (6) 0.0355 (6) −0.0056 (6) 0.0224 (6) −0.0095 (5)
C11 0.0438 (8) 0.0296 (7) 0.0243 (5) −0.0063 (6) 0.0126 (5) −0.0053 (5)
C12 0.0350 (7) 0.0198 (5) 0.0252 (5) −0.0019 (5) 0.0088 (5) −0.0005 (4)
C13 0.0263 (5) 0.0158 (5) 0.0208 (4) 0.0005 (4) 0.0074 (4) −0.0009 (4)
C14 0.0387 (7) 0.0197 (5) 0.0229 (5) 0.0008 (5) 0.0105 (5) 0.0036 (4)
C15 0.0397 (7) 0.0290 (6) 0.0190 (5) 0.0015 (5) 0.0110 (4) 0.0023 (5)
C16 0.0346 (6) 0.0254 (6) 0.0194 (4) 0.0000 (5) 0.0099 (4) −0.0038 (4)
C17 0.0299 (6) 0.0170 (5) 0.0204 (4) −0.0007 (4) 0.0078 (4) −0.0025 (4)
C18 0.0224 (5) 0.0174 (5) 0.0169 (4) −0.0002 (4) 0.0060 (4) 0.0001 (4)

Geometric parameters (Å, °)

N1—C4 1.3665 (13) C8—H8 0.9500
N1—C18 1.4226 (13) C9—C10 1.388 (2)
N1—C1 1.4731 (14) C9—H9 0.9500
N2—C6 1.2886 (14) C10—C11 1.381 (2)
N2—C13 1.4017 (14) C10—H10 0.9500
O1—C4 1.2246 (13) C11—C12 1.3942 (17)
C1—C2 1.4648 (17) C11—H11 0.9500
C1—H1A 0.9900 C12—H12 0.9500
C1—H1B 0.9900 C13—C14 1.4056 (16)
C2—C3 1.1739 (19) C13—C18 1.4115 (16)
C3—H3 0.9500 C14—C15 1.3785 (17)
C4—C5 1.5037 (16) C14—H14 0.9500
C5—C6 1.5112 (16) C15—C16 1.3947 (18)
C5—H5A 0.9900 C15—H15 0.9500
C5—H5B 0.9900 C16—C17 1.3807 (16)
C6—C7 1.4851 (15) C16—H16 0.9500
C7—C12 1.3956 (16) C17—C18 1.4015 (15)
C7—C8 1.3988 (17) C17—H17 0.9500
C8—C9 1.3855 (17)
C4—N1—C18 124.24 (10) C8—C9—C10 120.56 (12)
C4—N1—C1 116.21 (9) C8—C9—H9 119.7
C18—N1—C1 119.45 (9) C10—C9—H9 119.7
C6—N2—C13 120.99 (10) C11—C10—C9 119.40 (12)
C2—C1—N1 113.12 (10) C11—C10—H10 120.3
C2—C1—H1A 109.0 C9—C10—H10 120.3
N1—C1—H1A 109.0 C10—C11—C12 120.45 (12)
C2—C1—H1B 109.0 C10—C11—H11 119.8
N1—C1—H1B 109.0 C12—C11—H11 119.8
H1A—C1—H1B 107.8 C11—C12—C7 120.53 (12)
C3—C2—C1 178.08 (13) C11—C12—H12 119.7
C2—C3—H3 180.0 C7—C12—H12 119.7
O1—C4—N1 121.55 (11) N2—C13—C14 116.43 (10)
O1—C4—C5 123.62 (10) N2—C13—C18 125.31 (10)
N1—C4—C5 114.75 (9) C14—C13—C18 118.07 (10)
C4—C5—C6 106.21 (9) C15—C14—C13 122.04 (11)
C4—C5—H5A 110.5 C15—C14—H14 119.0
C6—C5—H5A 110.5 C13—C14—H14 119.0
C4—C5—H5B 110.5 C14—C15—C16 119.54 (11)
C6—C5—H5B 110.5 C14—C15—H15 120.2
H5A—C5—H5B 108.7 C16—C15—H15 120.2
N2—C6—C7 118.90 (10) C17—C16—C15 119.64 (11)
N2—C6—C5 120.78 (10) C17—C16—H16 120.2
C7—C6—C5 120.28 (9) C15—C16—H16 120.2
C12—C7—C8 118.44 (11) C16—C17—C18 121.48 (11)
C12—C7—C6 122.43 (11) C16—C17—H17 119.3
C8—C7—C6 119.11 (10) C18—C17—H17 119.3
C9—C8—C7 120.60 (12) C17—C18—C13 119.22 (10)
C9—C8—H8 119.7 C17—C18—N1 118.34 (10)
C7—C8—H8 119.7 C13—C18—N1 122.33 (10)
C4—N1—C1—C2 84.64 (12) C10—C11—C12—C7 0.6 (2)
C18—N1—C1—C2 −91.95 (12) C8—C7—C12—C11 0.32 (18)
C18—N1—C4—O1 −178.39 (11) C6—C7—C12—C11 178.80 (11)
C1—N1—C4—O1 5.21 (16) C6—N2—C13—C14 144.00 (12)
C18—N1—C4—C5 −1.33 (15) C6—N2—C13—C18 −41.08 (17)
C1—N1—C4—C5 −177.73 (9) N2—C13—C14—C15 176.89 (12)
O1—C4—C5—C6 106.80 (12) C18—C13—C14—C15 1.6 (2)
N1—C4—C5—C6 −70.19 (12) C13—C14—C15—C16 −1.4 (2)
C13—N2—C6—C7 174.26 (10) C14—C15—C16—C17 0.5 (2)
C13—N2—C6—C5 −3.54 (17) C15—C16—C17—C18 0.18 (19)
C4—C5—C6—N2 75.83 (13) C16—C17—C18—C13 −0.01 (18)
C4—C5—C6—C7 −101.94 (11) C16—C17—C18—N1 −176.21 (11)
N2—C6—C7—C12 −178.58 (11) N2—C13—C18—C17 −175.69 (11)
C5—C6—C7—C12 −0.77 (17) C14—C13—C18—C17 −0.85 (17)
N2—C6—C7—C8 −0.12 (16) N2—C13—C18—N1 0.36 (18)
C5—C6—C7—C8 177.70 (11) C14—C13—C18—N1 175.20 (11)
C12—C7—C8—C9 −1.09 (18) C4—N1—C18—C17 −140.25 (11)
C6—C7—C8—C9 −179.61 (11) C1—N1—C18—C17 36.05 (15)
C7—C8—C9—C10 0.98 (19) C4—N1—C18—C13 43.68 (17)
C8—C9—C10—C11 −0.1 (2) C1—N1—C18—C13 −140.03 (11)
C9—C10—C11—C12 −0.7 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C1—H1A···O1i 0.99 2.14 3.1074 (15) 166
C3—H3···N2ii 0.95 2.58 3.4269 (18) 149

Symmetry codes: (i) x+1/2, −y+1/2, z+1/2; (ii) −x+3/2, y+1/2, −z+3/2.

Table 2 Medium planes existent in the molecular unit of the title compound

Plane Atoms Largest deviation/Å
A C5 to C12 plus N2 -0.019 (1)
B C13 to C18 plus N1, N2 -0.039 (1)
C C1 to C5 plus O1, N1, C18 -0.026 (1)
D C1 to C3 plus N1 -0.014 (1)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2762).

References

  1. Aatif, A., Baouid, A., Hasnaoui, A. & Pierrot, M. (2000). Acta Cryst. C56, e459–e460.
  2. Ahmed, F., Rittmeyer, G., Goetzke, E. & Koster, J. (1983). Brit. J. Clin. Pharmacol. 16, 419S–423S. [DOI] [PMC free article] [PubMed]
  3. Amarante, T. R., Figueiredo, S., Lopes, A. D., Gonçalves, I. S. & Almeida Paz, F. A. (2009). Acta Cryst. E65, o2047. [DOI] [PMC free article] [PubMed]
  4. Amarante, T. R., Gonçalves, I. S. & Almeida Paz, F. A. (2009). Acta Cryst. E65, o1962–o1963. [DOI] [PMC free article] [PubMed]
  5. Baouid, A., Elhazazi, S., Hasnaoui, A., Compain, P., Lavergne, J. P. & Huet, F. (2001). New J. Chem. 25, 1479–1481.
  6. Bird, C. W. (1996). Comprehensive Heterocyclic Chemistry Oxford: Pergamon.
  7. Boudina, A., Baouid, A., Hasnaoui, A., Aatif, A., Eddike, D. & Tillard, M. (2007). Acta Cryst. E63, o1544–o1545.
  8. Brandenburg, K. (2009). DIAMOND Crystal Impact GbR, Bonn, Germany.
  9. Bruker (2005). SAINT-Plus Bruker AXS, Inc. Madison, Wisconsin, USA.
  10. Bruker (2006). APEX2 Bruker AXS, Delft, The Netherlands.
  11. Di Braccio, M., Grossi, G., Roma, G., Vargiu, L., Mura, M. & Marongiu, M. E. (2001). Eur. J. Med. Chem. 36, 935–949. [DOI] [PubMed]
  12. Di Braccio, M., Roma, G., Grossi, G. C., Ghima, M. & Mereto, E. (1990). Eur. J. Med. Chem 25, 681–687.
  13. Fernandes, J. A., Almeida Paz, F. A., Marques, J., Marques, M. P. M. & Braga, S. S. (2011). Acta Cryst. C67, o57–o59. [DOI] [PubMed]
  14. Goetzke, E., Findeisen, P., Welbers, I. B. & Koster, J. (1983). Brit. J. Clin. Pharmacol. 16, 397S–402S. [DOI] [PMC free article] [PubMed]
  15. Kavita, D. T., Achaiah, G. & Reddy, V. M. (1988). J. Indian Chem. Soc. 65, 567–570.
  16. Meldrum, B. S. & Chapman, A. G. (1986). Epilepsia, 27 (suppl. 1), S3–S13. [DOI] [PubMed]
  17. Nardi, D., Tajana, A. & Rossi, S. (1973). J. Heterocycl. Chem. 10, 815–819.
  18. Paz, F. A. A., Bond, A. D., Khimyak, Y. Z. & Klinowski, J. (2002). New J. Chem. 26, 381–383.
  19. Paz, F. A. A. & Klinowski, J. (2003). CrystEngComm 5, 238–244.
  20. Sheldrick, G. M. (1997). SADABS University of Göttingen, Germany.
  21. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  22. Sieghart, W. & Schuster, A. (1984). Biochem. Pharmacol. 33, 4033–4038. [DOI] [PubMed]
  23. Wolff, M. E. (1996). Burger’s Medicinal Chemistry and Drug Discovery 5th ed. New York: John Wiley & Sons.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811027371/tk2762sup1.cif

e-67-o2075-sup1.cif (18.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811027371/tk2762Isup2.hkl

e-67-o2075-Isup2.hkl (256KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811027371/tk2762Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES