Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jul 23;67(Pt 8):o2084–o2085. doi: 10.1107/S1600536811028170

2-(2-Chloro-6,7-dimethyl­quinolin-3-yl)-2,3-dihydro­quinolin-4(1H)-one

Saida Benzerka a, Abdelmalek Bouraiou b, Sofiane Bouacida b,*, Thierry Roisnel c, Ali Belfaitah a
PMCID: PMC3213526  PMID: 22091105

Abstract

In the title mol­ecule, C20H17ClN2O, the dihedral angle between the mean plane of the quinoline ring system and the benzene ring of the dihydro­quinolinone moiety is 57.84 (8)°. In the crystal, mol­ecules are linked into centrosymmetric dimers via pairs of inter­molecular N—H⋯N hydrogen bonds. These dimers are further stabilized by weak π–π stacking inter­actions between pyridine rings with a centroid–centroid distance of 3.9414 (12) Å.

Related literature

For quinoline compounds and their applications, see: Prakash et al. (1994); Singh & Kapil (1993); Kalinin et al. (1992); Xia et al. (1992); Donnelly & Farrell (1990a ,b ); Kumar et al. (2004); Varma & Saini (1997); Tokes & Litkei (1993); Tokes & Szilagyi (1987); Tokes et al. (1992). For our previous work on quinoline derivatives, see: Belfaitah et al. (2006); Bouraiou et al. (2008, 2010, 2011); Benzerka et al. (2010); Ladraa et al. (2010). graphic file with name e-67-o2084-scheme1.jpg

Experimental

Crystal data

  • C20H17ClN2O

  • M r = 336.81

  • Triclinic, Inline graphic

  • a = 7.7345 (4) Å

  • b = 10.6196 (6) Å

  • c = 11.3463 (4) Å

  • α = 96.425 (2)°

  • β = 100.068 (3)°

  • γ = 109.576 (1)°

  • V = 849.84 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 295 K

  • 0.15 × 0.06 × 0.05 mm

Data collection

  • Nonius KappaCCD diffractometer

  • 7058 measured reflections

  • 3863 independent reflections

  • 2507 reflections with I > 2σ(I)

  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048

  • wR(F 2) = 0.133

  • S = 1.00

  • 3863 reflections

  • 222 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablock(s) global. DOI: 10.1107/S1600536811028170/lh5284sup1.cif

e-67-o2084-sup1.cif (19.6KB, cif)

Supplementary material file. DOI: 10.1107/S1600536811028170/lh5284globalsup2.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯N1i 0.86 (2) 2.53 (2) 3.297 (2) 148.6 (18)

Symmetry code: (i) Inline graphic.

Acknowledgments

We are grateful to all personnel of the PHYSYNOR laboratory, Université Mentouri-Constantine, Algeria, for their assistance. Thanks are due to the MESRS (Ministére de l’Enseignement Supérieur et de la Recherche Scientifique - Algeria) for financial support.

supplementary crystallographic information

Comment

2-Phenyl-2,3-dihydroquinolin-4(1H)-one compound substituted on the aromatic rings are valuable precursors (Prakash et al., 1994; Singh & Kapil, 1993) for the synthesis of medicinally important compounds, which are often not readily accessible by other means (Kalinin et al., 1992; Xia et al., 1992). The formation of 2,3-dihydroquinolin-4(1H)-ones is generally accomplished by acid- or base-catalyzed isomerization of substituted 2'-aminochalcones (Donnelly & Farrell, 1990a,b; Tokes & Litkei, 1993). Most of the procedures involve the use of corrosive reagents such as orthophosphoric acid, acetic acid or strong alkali. Many attempts have been made to explore efficient catalysts to accelerate this kind of reaction. Some of them are of limited synthetic scope due to low yields, long reaction times and the need for large amount of catalyst, specialized solvents or microwave activation (Tokes & Szilagyi, 1987; Tokes et al., 1992; Kumar et al. 2004; Varma & Saini, 1997). In continuation of our studies on quinoline derivatives and their biological activities (Bouraiou et al., 2010; Benzerka et al., 2010; Ladraa et al., 2010) we report herein the synthesis and structure determination of 2-(2-chloro-6,7-dimethylquinolin-3-yl)-2,3-dihydroquinolin-4(1H)-one I (Bouraiou et al., 2011). Characterization of the compound I was made from its spectral data (1H-NMR, 13C-NMR), and was unequivocally established from an X-ray crystallographic determination (I).

The molecular structure of (I) is shown in Fig. 1. The two rings of quinolyl moiety are fused in an axial fashion and form a dihedral angle of 0.28 (7)° and this quasi plane system forms dihedral angles of 57.84 (8)° with the benzene ring (C15-C20). The geometric parameters of (I) are in agreement with those of other structures possessing a quinolyl substituent previously reported in the literature (Belfaitah et al., 2006; Bouraiou et al., 2008; Bouraiou et al., 2011). In the crystal, molecules are linked into centrosymmetric dimers via pairs of intermolecular N–H···N hydrogen bonds (Fig. 2). These dimers are further stabilized by π–π stacking interactions between pyridine rings with a centroid to centroid distance of 3.9414 (12)Å.

Experimental

A mixture of (E)-1-(2-aminophenyl)-3-(2-chloro-6,7-dimethylquinolin-3-yl)prop-2-en-1-one and silica gel (1 g) impregnated with indium (III) chloride (20 mol%) was irradiated in domestic microwave oven at 360 W for 5 minutes (Bouraiou et al., 2011). Under these conditions, compound (I) was successfully synthesized in good yield (63%). A suitable crystal of title compound were obtained by crystallization from a CH2Cl2/di-isopropylether solution.

Refinement

All H atoms bonded to C atoms were located in difference Fourier maps but were introduced in calculated positions and treated as riding with C—H = 0.93-0.97Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl groups. The H atom boned to N2 was refined independently with Uiso(H) = 1.2Ueq(N).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Part of the crytal structure viewed along the b axis showing hydrogen bonds as dashed lines.

Crystal data

C20H17ClN2O Z = 2
Mr = 336.81 F(000) = 352
Triclinic, P1 Dx = 1.316 Mg m3
a = 7.7345 (4) Å Mo Kα radiation, λ = 0.71073 Å
b = 10.6196 (6) Å Cell parameters from 3734 reflections
c = 11.3463 (4) Å θ = 2.9–27.5°
α = 96.425 (2)° µ = 0.23 mm1
β = 100.068 (3)° T = 295 K
γ = 109.576 (1)° Needle, white
V = 849.84 (7) Å3 0.15 × 0.06 × 0.05 mm

Data collection

Nonius KappaCCD diffractometer 2507 reflections with I > 2σ(I)
Radiation source: Enraf–Nonius FR590 Rint = 0.029
graphite θmax = 27.5°, θmin = 3.0°
Detector resolution: 9 pixels mm-1 h = −10→10
CCD rotation images, thick slices scans k = −13→13
7058 measured reflections l = −14→14
3863 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133 H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0621P)2 + 0.0886P] where P = (Fo2 + 2Fc2)/3
3863 reflections (Δ/σ)max < 0.001
222 parameters Δρmax = 0.17 e Å3
0 restraints Δρmin = −0.20 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.2476 (3) −0.00341 (19) 0.99805 (16) 0.0463 (4)
C2 0.2561 (2) 0.13287 (18) 1.01932 (15) 0.0442 (4)
C3 0.2601 (3) 0.18540 (19) 1.13579 (16) 0.0474 (4)
H3 0.2659 0.2744 1.1546 0.057*
C4 0.2556 (3) 0.10607 (19) 1.22794 (16) 0.0475 (4)
C5 0.2595 (3) 0.1535 (2) 1.35012 (17) 0.0549 (5)
H5 0.2666 0.2423 1.3728 0.066*
C6 0.2531 (3) 0.0720 (2) 1.43636 (17) 0.0578 (5)
C7 0.2407 (3) −0.0639 (2) 1.40197 (18) 0.0579 (5)
C8 0.2379 (3) −0.1118 (2) 1.28402 (18) 0.0558 (5)
H8 0.2314 −0.2007 1.2624 0.067*
C9 0.2446 (2) −0.02881 (19) 1.19481 (16) 0.0476 (4)
C10 0.2307 (4) −0.1569 (3) 1.4943 (2) 0.0806 (7)
H10A 0.2206 −0.2449 1.4553 0.121*
H10B 0.1225 −0.1653 1.5278 0.121*
H10C 0.3427 −0.1194 1.5584 0.121*
C11 0.2620 (4) 0.1278 (3) 1.56687 (18) 0.0767 (7)
H11A 0.3749 0.1284 1.6184 0.115*
H11B 0.1542 0.0716 1.5921 0.115*
H11C 0.2625 0.2188 1.5729 0.115*
C12 0.2648 (2) 0.21733 (18) 0.91943 (16) 0.0448 (4)
H12 0.1964 0.1569 0.8412 0.054*
C13 0.4673 (3) 0.2922 (2) 0.91241 (18) 0.0535 (5)
H13A 0.5382 0.3471 0.9914 0.064*
H13B 0.5245 0.2265 0.8924 0.064*
C14 0.4785 (3) 0.3822 (2) 0.81848 (18) 0.0566 (5)
C15 0.3261 (3) 0.43479 (19) 0.79376 (17) 0.0524 (5)
C16 0.3250 (4) 0.5217 (2) 0.7094 (2) 0.0738 (7)
H16 0.4184 0.5419 0.6653 0.089*
C17 0.1893 (4) 0.5769 (3) 0.6911 (3) 0.0911 (9)
H17 0.1905 0.6342 0.6348 0.109*
C18 0.0495 (4) 0.5478 (3) 0.7563 (3) 0.0833 (8)
H18 −0.0425 0.5862 0.7438 0.1*
C19 0.0459 (3) 0.4632 (2) 0.8389 (2) 0.0609 (5)
H19 −0.0483 0.4446 0.8824 0.073*
C20 0.1829 (3) 0.40416 (18) 0.85847 (16) 0.0480 (4)
N1 0.2392 (2) −0.08277 (15) 1.07803 (14) 0.0498 (4)
N2 0.1772 (2) 0.31720 (17) 0.94168 (14) 0.0488 (4)
H2N 0.066 (3) 0.284 (2) 0.9549 (18) 0.059*
O1 0.6107 (2) 0.4116 (2) 0.76829 (17) 0.0858 (5)
Cl1 0.24838 (8) −0.07686 (5) 0.85241 (5) 0.06466 (19)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0434 (10) 0.0469 (10) 0.0467 (9) 0.0148 (8) 0.0099 (7) 0.0071 (7)
C2 0.0408 (9) 0.0471 (10) 0.0440 (9) 0.0149 (8) 0.0086 (7) 0.0108 (7)
C3 0.0513 (11) 0.0436 (10) 0.0484 (9) 0.0177 (8) 0.0121 (8) 0.0101 (8)
C4 0.0465 (10) 0.0507 (11) 0.0448 (9) 0.0160 (8) 0.0106 (8) 0.0115 (8)
C5 0.0545 (12) 0.0603 (12) 0.0492 (10) 0.0194 (10) 0.0121 (9) 0.0114 (9)
C6 0.0499 (11) 0.0743 (14) 0.0460 (10) 0.0165 (10) 0.0108 (8) 0.0172 (9)
C7 0.0469 (11) 0.0706 (14) 0.0560 (11) 0.0163 (10) 0.0106 (9) 0.0281 (10)
C8 0.0523 (11) 0.0522 (12) 0.0602 (12) 0.0141 (9) 0.0088 (9) 0.0210 (9)
C9 0.0416 (10) 0.0491 (11) 0.0497 (10) 0.0124 (8) 0.0087 (8) 0.0150 (8)
C10 0.0827 (17) 0.0918 (19) 0.0721 (14) 0.0277 (14) 0.0192 (12) 0.0446 (13)
C11 0.0823 (17) 0.0991 (19) 0.0475 (11) 0.0304 (15) 0.0157 (11) 0.0156 (12)
C12 0.0453 (10) 0.0455 (10) 0.0436 (9) 0.0153 (8) 0.0107 (7) 0.0113 (7)
C13 0.0458 (10) 0.0588 (12) 0.0592 (11) 0.0198 (9) 0.0144 (9) 0.0170 (9)
C14 0.0492 (11) 0.0569 (12) 0.0599 (11) 0.0110 (9) 0.0169 (9) 0.0144 (9)
C15 0.0515 (11) 0.0424 (10) 0.0562 (11) 0.0070 (9) 0.0107 (9) 0.0144 (8)
C16 0.0760 (16) 0.0627 (14) 0.0876 (16) 0.0178 (12) 0.0308 (13) 0.0370 (12)
C17 0.102 (2) 0.0756 (18) 0.114 (2) 0.0372 (16) 0.0319 (17) 0.0595 (16)
C18 0.0805 (17) 0.0698 (16) 0.115 (2) 0.0385 (14) 0.0229 (15) 0.0436 (15)
C19 0.0586 (12) 0.0517 (12) 0.0761 (13) 0.0229 (10) 0.0156 (10) 0.0171 (10)
C20 0.0470 (10) 0.0381 (9) 0.0519 (10) 0.0095 (8) 0.0060 (8) 0.0073 (8)
N1 0.0514 (9) 0.0441 (9) 0.0530 (8) 0.0159 (7) 0.0107 (7) 0.0121 (7)
N2 0.0466 (9) 0.0510 (9) 0.0541 (9) 0.0193 (7) 0.0164 (7) 0.0177 (7)
O1 0.0641 (10) 0.1091 (14) 0.0992 (12) 0.0288 (10) 0.0431 (9) 0.0487 (11)
Cl1 0.0817 (4) 0.0589 (3) 0.0535 (3) 0.0264 (3) 0.0186 (2) 0.0028 (2)

Geometric parameters (Å, °)

C1—N1 1.301 (2) C11—H11B 0.96
C1—C2 1.418 (3) C11—H11C 0.96
C1—Cl1 1.7485 (19) C12—N2 1.459 (2)
C2—C3 1.367 (2) C12—C13 1.521 (3)
C2—C12 1.519 (2) C12—H12 0.98
C3—C4 1.412 (2) C13—C14 1.504 (3)
C3—H3 0.93 C13—H13A 0.97
C4—C9 1.410 (3) C13—H13B 0.97
C4—C5 1.413 (3) C14—O1 1.223 (2)
C5—C6 1.373 (3) C14—C15 1.463 (3)
C5—H5 0.93 C15—C20 1.403 (3)
C6—C7 1.420 (3) C15—C16 1.403 (3)
C6—C11 1.513 (3) C16—C17 1.360 (4)
C7—C8 1.371 (3) C16—H16 0.93
C7—C10 1.512 (3) C17—C18 1.385 (4)
C8—C9 1.411 (2) C17—H17 0.93
C8—H8 0.93 C18—C19 1.367 (3)
C9—N1 1.371 (2) C18—H18 0.93
C10—H10A 0.96 C19—C20 1.400 (3)
C10—H10B 0.96 C19—H19 0.93
C10—H10C 0.96 C20—N2 1.389 (2)
C11—H11A 0.96 N2—H2N 0.86 (2)
N1—C1—C2 126.09 (17) H11B—C11—H11C 109.5
N1—C1—Cl1 114.81 (14) N2—C12—C2 110.34 (14)
C2—C1—Cl1 119.11 (13) N2—C12—C13 108.54 (15)
C3—C2—C1 116.21 (16) C2—C12—C13 111.35 (15)
C3—C2—C12 121.63 (17) N2—C12—H12 108.9
C1—C2—C12 122.15 (16) C2—C12—H12 108.9
C2—C3—C4 120.78 (17) C13—C12—H12 108.9
C2—C3—H3 119.6 C14—C13—C12 111.87 (16)
C4—C3—H3 119.6 C14—C13—H13A 109.2
C9—C4—C3 117.57 (16) C12—C13—H13A 109.2
C9—C4—C5 118.52 (16) C14—C13—H13B 109.2
C3—C4—C5 123.91 (18) C12—C13—H13B 109.2
C6—C5—C4 121.8 (2) H13A—C13—H13B 107.9
C6—C5—H5 119.1 O1—C14—C15 122.46 (19)
C4—C5—H5 119.1 O1—C14—C13 121.3 (2)
C5—C6—C7 119.29 (18) C15—C14—C13 116.24 (17)
C5—C6—C11 120.1 (2) C20—C15—C16 118.8 (2)
C7—C6—C11 120.59 (19) C20—C15—C14 120.37 (17)
C8—C7—C6 119.87 (17) C16—C15—C14 120.79 (19)
C8—C7—C10 119.5 (2) C17—C16—C15 121.0 (2)
C6—C7—C10 120.6 (2) C17—C16—H16 119.5
C7—C8—C9 121.2 (2) C15—C16—H16 119.5
C7—C8—H8 119.4 C16—C17—C18 120.1 (2)
C9—C8—H8 119.4 C16—C17—H17 119.9
N1—C9—C4 122.10 (15) C18—C17—H17 119.9
N1—C9—C8 118.61 (18) C19—C18—C17 120.4 (2)
C4—C9—C8 119.29 (17) C19—C18—H18 119.8
C7—C10—H10A 109.5 C17—C18—H18 119.8
C7—C10—H10B 109.5 C18—C19—C20 120.5 (2)
H10A—C10—H10B 109.5 C18—C19—H19 119.7
C7—C10—H10C 109.5 C20—C19—H19 119.7
H10A—C10—H10C 109.5 N2—C20—C19 120.17 (18)
H10B—C10—H10C 109.5 N2—C20—C15 120.66 (18)
C6—C11—H11A 109.5 C19—C20—C15 119.16 (18)
C6—C11—H11B 109.5 C1—N1—C9 117.23 (16)
H11A—C11—H11B 109.5 C20—N2—C12 115.66 (15)
C6—C11—H11C 109.5 C20—N2—H2N 111.0 (14)
H11A—C11—H11C 109.5 C12—N2—H2N 114.5 (15)
N1—C1—C2—C3 1.6 (3) N2—C12—C13—C14 −55.2 (2)
Cl1—C1—C2—C3 −178.31 (14) C2—C12—C13—C14 −176.88 (16)
N1—C1—C2—C12 −179.75 (18) C12—C13—C14—O1 −153.6 (2)
Cl1—C1—C2—C12 0.3 (2) C12—C13—C14—C15 28.1 (2)
C1—C2—C3—C4 −0.1 (3) O1—C14—C15—C20 −176.5 (2)
C12—C2—C3—C4 −178.73 (16) C13—C14—C15—C20 1.8 (3)
C2—C3—C4—C9 −0.7 (3) O1—C14—C15—C16 0.5 (3)
C2—C3—C4—C5 179.93 (18) C13—C14—C15—C16 178.8 (2)
C9—C4—C5—C6 0.1 (3) C20—C15—C16—C17 0.7 (4)
C3—C4—C5—C6 179.40 (19) C14—C15—C16—C17 −176.3 (2)
C4—C5—C6—C7 −0.5 (3) C15—C16—C17—C18 0.1 (4)
C4—C5—C6—C11 178.64 (19) C16—C17—C18—C19 −0.3 (5)
C5—C6—C7—C8 0.9 (3) C17—C18—C19—C20 −0.3 (4)
C11—C6—C7—C8 −178.26 (19) C18—C19—C20—N2 −179.4 (2)
C5—C6—C7—C10 −179.1 (2) C18—C19—C20—C15 1.1 (3)
C11—C6—C7—C10 1.7 (3) C16—C15—C20—N2 179.17 (19)
C6—C7—C8—C9 −0.8 (3) C14—C15—C20—N2 −3.8 (3)
C10—C7—C8—C9 179.2 (2) C16—C15—C20—C19 −1.3 (3)
C3—C4—C9—N1 0.3 (3) C14—C15—C20—C19 175.74 (18)
C5—C4—C9—N1 179.64 (17) C2—C1—N1—C9 −2.1 (3)
C3—C4—C9—C8 −179.37 (17) Cl1—C1—N1—C9 177.84 (13)
C5—C4—C9—C8 0.0 (3) C4—C9—N1—C1 1.1 (3)
C7—C8—C9—N1 −179.27 (18) C8—C9—N1—C1 −179.28 (17)
C7—C8—C9—C4 0.4 (3) C19—C20—N2—C12 153.97 (18)
C3—C2—C12—N2 −30.9 (2) C15—C20—N2—C12 −26.5 (2)
C1—C2—C12—N2 150.56 (17) C2—C12—N2—C20 177.70 (15)
C3—C2—C12—C13 89.7 (2) C13—C12—N2—C20 55.4 (2)
C1—C2—C12—C13 −88.8 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2N···N1i 0.86 (2) 2.53 (2) 3.297 (2) 148.6 (18)

Symmetry codes: (i) −x, −y, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5284).

References

  1. Belfaitah, A., Ladraa, S., Bouraiou, A., Benali-Cherif, N., Debache, A. & Rhouati, S. (2006). Acta Cryst. E62, 1355–1357.
  2. Benzerka, S., Bouraiou, A., Bouacida, S., Roisnel, T. & Belfaitah, A. (2010). Acta Cryst. E66, o1006. [DOI] [PMC free article] [PubMed]
  3. Bouraiou, A., Berrée, F., Bouacida, S., Carboni, C., Debache, A., Roisnel, T. & Belfaitah, A. (2011). Lett. Org. Chem. 8, 474–477.
  4. Bouraiou, A., Debache, A., Rhouati, S., Belfaitah, A., Benali-Cherif, N. & Carboni, B. (2010). Open Org. Chem. J. 4, 1–7.
  5. Bouraiou, A., Debache, A., Rhouati, S., Carboni, B. & Belfaitah, A. (2008). J. Heterocycl. Chem. 45, 329–333.
  6. Brandenburg, K. & Berndt, M. (2001). DIAMOND Crystal Impact, Bonn, Germany.
  7. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.
  8. Donnelly, J. A. & Farrell, D. F. (1990a). J. Org. Chem. 55, 1757–1761.
  9. Donnelly, J. A. & Farrell, D. F. (1990b). Tetrahedron, 46, 885–894.
  10. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  11. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  12. Kalinin, V. N., Shostakovsky, M. V. & Ponomaryov, A. B. (1992). Tetrahedron Lett. 33, 373–376.
  13. Kumar, K. H., Muralidharan, D. & Perumal, P. T. (2004). Synthesis, pp. 63–69.
  14. Ladraa, S., Bouraiou, A., Bouacida, S., Roisnel, T. & Belfaitah, A. (2010). Acta Cryst. E66, o2312–o2313. [DOI] [PMC free article] [PubMed]
  15. Nonius (1998). KappaCCD Reference Manual Nonius BV, Delft, The Netherlands.
  16. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  17. Prakash, O., Kumar, D., Saini, R. K. & Singh, S. P. (1994). Synth. Commun. 24, 2167–2172.
  18. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  19. Singh, O. V. & Kapil, R. S. (1993). Synth. Commun. 23, 277–283.
  20. Tokes, A. L. & Litkei, Gy. (1993). Synth. Commun. 23, 895–902.
  21. Tokes, A. L., Litkei, Gy. & Szilagyi, L. (1992). Synth. Commun. 22, 2433–2445.
  22. Tokes, A. L. & Szilagyi, L. (1987). Synth. Commun. 17, 1235–1245.
  23. Varma, R. S. & Saini, R. K. (1997). Synlett, pp. 857–858.
  24. Xia, Y., Yang, Z.-Y., Xia, P., Bastow, K. F., Tachibana, Y., Kuo, S.-C., Hamel, E., Hackl, T. & Lee, K.-H. (1992). J. Med. Chem. 41, 1155–1162. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global. DOI: 10.1107/S1600536811028170/lh5284sup1.cif

e-67-o2084-sup1.cif (19.6KB, cif)

Supplementary material file. DOI: 10.1107/S1600536811028170/lh5284globalsup2.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES