Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jul 23;67(Pt 8):o2088. doi: 10.1107/S1600536811028388

5-(4-Chloro­benz­yl)-1H-tetra­zole

Pei-Jiang Liu a, Dong-Sheng Ma a,*, Shuai Zhang a, Guang-Feng Hou a
PMCID: PMC3213529  PMID: 22091108

Abstract

In the title compound, C8H7ClN4, the phenyl and tetra­zole rings are inclined at a dihedral angle of 67.52 (6)°. In the crystal, mol­ecules are linked by an N—H⋯N hydrogen bond into a chain structure along [010]. π–π inter­actions with centroid–centroid distances of 3.526 (1) Å between adjacent tetra­zole rings further link the chains, forming a ribbon structure.

Related literature

For background to tetra­zole compounds, see: Kitagawa et al. (2004); Zhao et al. (2008); For the synthesis, see: Luo et al. (2006).graphic file with name e-67-o2088-scheme1.jpg

Experimental

Crystal data

  • C8H7ClN4

  • M r = 194.63

  • Monoclinic, Inline graphic

  • a = 14.654 (3) Å

  • b = 4.9321 (10) Å

  • c = 12.688 (3) Å

  • β = 105.63 (3)°

  • V = 883.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.39 mm−1

  • T = 293 K

  • 0.40 × 0.38 × 0.15 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995) T min = 0.860, T max = 0.944

  • 8039 measured reflections

  • 2015 independent reflections

  • 1546 reflections with I > 2σ(I)

  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033

  • wR(F 2) = 0.094

  • S = 1.08

  • 2015 reflections

  • 122 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.33 e Å−3

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811028388/ng5199sup1.cif

e-67-o2088-sup1.cif (17.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811028388/ng5199Isup2.hkl

e-67-o2088-Isup2.hkl (99.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811028388/ng5199Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H1⋯N1i 0.90 (1) 1.92 (1) 2.8013 (15) 168 (2)

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank Heilongjiang University for supporting this work.

supplementary crystallographic information

Comment

The tetrazole has attracted considerable interesting owing to their structural characterization in coordination chemistry and the extensively application in medicinal chemistry and materials science (Zhao et al. 2008; Kitagawa et al. 2004). Here, we report the synthesis and crystal structure of the title compound.

As shown in fig.1, the benzenyl plane and tetrazole rings form a dihedral angle about 67.52 (6) ° (Fig. 1). In the crystal packing, the molecules are linked by N—H···N hydrogen bonds into a chain structure alone [010] (Fig. 2, Table 1). The π—π interactions with distances of 3.526 (1) Å (center to center) between the adjacent tetrazole rings further link them to form ribbon structure (Fig. 3).

Experimental

The title compound was prepared as follows (Luo et al. 2006):2-(4-chlorophenyl)acetonitrile (6.06 g, 0.04 mol), NaN3 (3.9 g, 0.06 mol) and NH4Cl (3.21 g, 0.06 mol) were dissolved in DMF (120 ml). The mixture was reflux for 20 h under stirring. Then, it was cooled to room temperature and the mixture was filtered. The solvent was evaporated and the residue was poured into cold water (30 ml) to give the title compound (4.32 g, 55.5 %). The crystals suitable for X-ray diffraction were obtained from 10 mL mixed solution of ethanol and water (1:1).

Refinement

The anormal reflection data (-12 3 3) have been omitted during the refinement.H atoms bound to C atoms were placed in calculated positions and treated as riding on their parent atoms, with C—H = 0.93 Å (aromatic); C—H = 0.97 Å (methylene), and with Uiso(H) = 1.2Ueq(C). N-bounded H atom was found from Fourier map and was refined restrainedly with N—H = 0.90 Å.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing displacement ellipsoids at the 50% probability level for non-H atoms.

Fig. 2.

Fig. 2.

A partial packing view, showing chain structure along [0 1 0].

Fig. 3.

Fig. 3.

A partial packing view, showing double chain structure forming by N—H···N hydrogen bonds and π—π intercations.

Crystal data

C8H7ClN4 F(000) = 400
Mr = 194.63 Dx = 1.464 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 6142 reflections
a = 14.654 (3) Å θ = 3.3–25.1°
b = 4.9321 (10) Å µ = 0.39 mm1
c = 12.688 (3) Å T = 293 K
β = 105.63 (3)° Block, colorless
V = 883.1 (3) Å3 0.40 × 0.38 × 0.15 mm
Z = 4

Data collection

Rigaku R-AXIS RAPID diffractometer 2015 independent reflections
Radiation source: fine-focus sealed tube 1546 reflections with I > 2σ(I)
graphite Rint = 0.025
ω scans θmax = 27.5°, θmin = 3.3°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) h = −18→19
Tmin = 0.860, Tmax = 0.944 k = −6→6
8039 measured reflections l = −16→16

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094 H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0482P)2 + 0.0994P] where P = (Fo2 + 2Fc2)/3
2015 reflections (Δ/σ)max = 0.001
122 parameters Δρmax = 0.18 e Å3
1 restraint Δρmin = −0.33 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.37038 (9) 0.2990 (3) 1.07319 (14) 0.0463 (4)
C2 0.29853 (11) 0.4022 (3) 1.11205 (14) 0.0503 (4)
H2 0.2911 0.3450 1.1791 0.060*
C3 0.23731 (10) 0.5923 (3) 1.05032 (13) 0.0465 (4)
H3 0.1891 0.6638 1.0768 0.056*
C4 0.24675 (9) 0.6773 (3) 0.95005 (12) 0.0380 (3)
C5 0.31899 (11) 0.5667 (3) 0.91227 (15) 0.0467 (4)
H5 0.3259 0.6203 0.8446 0.056*
C6 0.38090 (11) 0.3781 (3) 0.97347 (15) 0.0518 (4)
H6 0.4292 0.3057 0.9473 0.062*
C7 0.18309 (10) 0.8938 (3) 0.88444 (14) 0.0451 (4)
H7A 0.2059 1.0694 0.9149 0.054*
H7B 0.1887 0.8888 0.8100 0.054*
C8 0.08089 (9) 0.8704 (2) 0.88086 (11) 0.0311 (3)
Cl1 0.44739 (3) 0.06175 (9) 1.15206 (5) 0.0707 (2)
N1 0.03034 (8) 0.6471 (2) 0.87394 (9) 0.0347 (3)
N2 −0.06056 (8) 0.7269 (2) 0.86416 (10) 0.0393 (3)
N3 −0.06566 (8) 0.9885 (2) 0.86545 (10) 0.0404 (3)
N4 0.02296 (8) 1.0797 (2) 0.87674 (9) 0.0346 (3)
H1 0.0343 (11) 1.2592 (6) 0.8810 (12) 0.048 (4)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0327 (7) 0.0365 (7) 0.0624 (10) 0.0041 (6) 0.0001 (6) −0.0060 (7)
C2 0.0506 (9) 0.0497 (9) 0.0504 (10) 0.0101 (7) 0.0130 (7) 0.0055 (7)
C3 0.0416 (8) 0.0477 (9) 0.0531 (10) 0.0127 (7) 0.0176 (7) 0.0025 (7)
C4 0.0330 (6) 0.0302 (7) 0.0494 (9) −0.0047 (6) 0.0090 (6) −0.0018 (6)
C5 0.0424 (8) 0.0469 (9) 0.0548 (10) −0.0032 (7) 0.0198 (7) −0.0019 (7)
C6 0.0354 (7) 0.0486 (9) 0.0741 (12) 0.0022 (7) 0.0194 (8) −0.0124 (8)
C7 0.0401 (7) 0.0327 (7) 0.0615 (10) −0.0044 (6) 0.0119 (7) 0.0091 (7)
C8 0.0390 (6) 0.0224 (6) 0.0306 (7) 0.0005 (5) 0.0068 (5) 0.0001 (5)
Cl1 0.0512 (3) 0.0538 (3) 0.0907 (4) 0.0194 (2) −0.0094 (2) −0.0025 (2)
N1 0.0390 (6) 0.0229 (5) 0.0424 (7) −0.0012 (5) 0.0115 (5) −0.0019 (4)
N2 0.0390 (6) 0.0329 (6) 0.0473 (7) −0.0002 (5) 0.0140 (5) −0.0006 (5)
N3 0.0429 (6) 0.0337 (6) 0.0465 (7) 0.0059 (5) 0.0153 (5) 0.0025 (5)
N4 0.0461 (6) 0.0209 (5) 0.0366 (7) 0.0024 (5) 0.0107 (5) 0.0003 (4)

Geometric parameters (Å, °)

C1—C6 1.372 (2) C6—H6 0.9300
C1—C2 1.375 (2) C7—C8 1.4906 (19)
C1—Cl1 1.7423 (16) C7—H7A 0.9700
C2—C3 1.385 (2) C7—H7B 0.9700
C2—H2 0.9300 C8—N1 1.3169 (17)
C3—C4 1.381 (2) C8—N4 1.3284 (17)
C3—H3 0.9300 N1—N2 1.3622 (16)
C4—C5 1.386 (2) N2—N3 1.2927 (17)
C4—C7 1.5117 (19) N3—N4 1.3449 (17)
C5—C6 1.383 (2) N4—H1 0.8998 (11)
C5—H5 0.9300
C6—C1—C2 120.83 (14) C5—C6—H6 120.3
C6—C1—Cl1 120.30 (12) C8—C7—C4 115.34 (12)
C2—C1—Cl1 118.87 (14) C8—C7—H7A 108.4
C1—C2—C3 119.32 (16) C4—C7—H7A 108.4
C1—C2—H2 120.3 C8—C7—H7B 108.4
C3—C2—H2 120.3 C4—C7—H7B 108.4
C4—C3—C2 121.06 (13) H7A—C7—H7B 107.5
C4—C3—H3 119.5 N1—C8—N4 107.77 (11)
C2—C3—H3 119.5 N1—C8—C7 127.54 (12)
C3—C4—C5 118.32 (14) N4—C8—C7 124.55 (12)
C3—C4—C7 121.43 (13) C8—N1—N2 106.44 (10)
C5—C4—C7 120.20 (14) N3—N2—N1 110.23 (11)
C6—C5—C4 121.15 (16) N2—N3—N4 106.11 (11)
C6—C5—H5 119.4 C8—N4—N3 109.45 (11)
C4—C5—H5 119.4 C8—N4—H1 131.0 (11)
C1—C6—C5 119.31 (14) N3—N4—H1 119.5 (10)
C1—C6—H6 120.3

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N4—H1···N1i 0.90 (1) 1.92 (1) 2.8013 (15) 168.(2)

Symmetry codes: (i) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG5199).

References

  1. Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  2. Kitagawa, S., Kitaura, R. & Noro, S. I. (2004). Angew. Chem. Int. Ed., 43, 2334–2375. [DOI] [PubMed]
  3. Luo, J., Zhang, X.-R., Cui, L.-L., Dai, W.-Q. & Liu, B.-S. (2006). Acta Cryst. C62, m614–m616. [DOI] [PubMed]
  4. Rigaku (1998). RAPID-AUTO Rigaku Corporation, Tokyo, Japan.
  5. Rigaku/MSC (2002). CrystalStructure Rigaku/MSC Inc., The Woodlands,Texas, USA.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Zhao, H., Qu, Z.-R., Ye, H.-Y. & Xiong, R.-G. (2008). Chem. Soc. Rev., 37, 84–100. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811028388/ng5199sup1.cif

e-67-o2088-sup1.cif (17.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811028388/ng5199Isup2.hkl

e-67-o2088-Isup2.hkl (99.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811028388/ng5199Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES