Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jul 23;67(Pt 8):o2093. doi: 10.1107/S1600536811028297

N-(2,5-Dichloro­phen­yl)succinamic acid

B S Saraswathi a, Sabine Foro b, B Thimme Gowda a,*
PMCID: PMC3213535  PMID: 22091112

Abstract

In the title compound, C10H9Cl2NO3, the conformation of the N—H bond in the amide segment is syn with respect to the ortho-Cl atom and anti to the meta-Cl atom of the benzene ring. In the crystal, inter­molecular O—H⋯O and N—H⋯O hydrogen bonds pack the mol­ecules into two types of chains along the a and b axes, respectively, leading to an overall sheet structure. The acid group in the side chain is disordered and was refined using a split model with site-occupation factors of 0.60:0.40.

Related literature

For our studies of the effects of substituents on the structures and other aspects of N-(ar­yl)-amides, see: Bhat & Gowda (2000); Gowda et al. (2007); Saraswathi et al. (2011a,b ), on N-(ar­yl)-methane­sulfonamides, see: Jayalakshmi & Gowda (2004) and on N-chloro-aryl­sulfonamides, see: Gowda et al. (2003). For the modes of inter­linking carb­oxy­lic acids by hydrogen bonds, see: Leiserowitz (1976). For the packing of mol­ecules involving dimeric hydrogen-bonding associations of each carboxyl group with a centrosymmetrically related neighbor, see: Jagannathan et al. (1994).graphic file with name e-67-o2093-scheme1.jpg

Experimental

Crystal data

  • C10H9Cl2NO3

  • M r = 262.08

  • Monoclinic, Inline graphic

  • a = 5.726 (1) Å

  • b = 4.787 (1) Å

  • c = 41.583 (6) Å

  • β = 91.93 (2)°

  • V = 1139.2 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.56 mm−1

  • T = 293 K

  • 0.44 × 0.16 × 0.09 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) T min = 0.791, T max = 0.951

  • 3375 measured reflections

  • 2046 independent reflections

  • 1552 reflections with I > 2σ(I)

  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.077

  • wR(F 2) = 0.171

  • S = 1.14

  • 2046 reflections

  • 185 parameters

  • 54 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.75 e Å−3

  • Δρmin = −0.41 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811028297/vm2110sup1.cif

e-67-o2093-sup1.cif (17KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811028297/vm2110Isup2.hkl

e-67-o2093-Isup2.hkl (100.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811028297/vm2110Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2A—H2A⋯O3Ai 0.82 1.90 2.687 (15) 162
O2B—H2B⋯O3Bi 0.82 1.90 2.64 (2) 150
N1—H1N⋯O1ii 0.85 (2) 2.07 (2) 2.901 (6) 167 (5)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

BSS thanks the University Grants Commission, Government of India, New Delhi, for the award of a research fellowship under its faculty improvement program.

supplementary crystallographic information

Comment

The amide and sulfonamide moieties are important constituents of many biologically important compounds. As a part of our studies on the effects of substituents on the structures and other aspects of this class of compounds (Bhat & Gowda, 2000; Gowda et al., 2003, 2007; Jayalakshmi & Gowda, 2004; Saraswathi et al., 2011a,b), in the present work, the crystal structure of N-(2,5-dichlorophenyl)-succinamic acid (I) has been determined (Fig. 1). The conformation of the N—H bond in the amide segment is syn to the ortho–chloro atom and anti to the meta–chloro atom of the benzene ring, similar to the syn conformation observed between the amide hydrogen and the ortho- methyl group and anti conformation between the amide hydrogen and the meta-methyl group in the benzene ring of N-(2,5-dimethylphenyl)-succinamic acid monohydrate (II) (Saraswathi et al., 2011a).

Further, the conformations of the amide oxygen and the carboxyl oxygen of the acid segment are syn to each other. But the conformation of the amide C═O is anti to the H atoms on the adjacent –CH2 group, while the carboxyl C═O is syn to the H atoms on the adjacent –CH2 group.

The C═O and O—H bonds of the acid group are in syn position to each other, similar to that observed in (II) and in N-(2,6-dichlorophenyl)-succinamic acid (Saraswathi et al., 2011b).

The intermolecular O—H···O and N—H···O hydrogen bonds, along a- and b-axes, respectively, pack the molecules into infinite chains in the structure (Table 1, Fig.2).

The modes of interlinking carboxylic acids by hydrogen bonds is described elsewhere (Leiserowitz, 1976). The packing of molecules involving dimeric hydrogen bonded association of each carboxyl group with a centrosymmetrically related neighbor has also been observed (Jagannathan et al., 1994).

Experimental

The solution of succinic anhydride (0.01 mole) in toluene (25 ml) was treated dropwise with the solution of 2,5-dichloroaniline (0.01 mole) also in toluene (20 ml) with constant stirring. The resulting mixture was stirred for about one hour and set aside for an additional hour at room temperature for completion of the reaction. The mixture was then treated with dilute hydrochloric acid to remove the unreacted 2,5-dichloroaniline. The resultant title compound was filtered under suction and washed thoroughly with water to remove the unreacted succinic anhydride and succinic acid. It was recrystallized to constant melting point from ethanol. The purity of the compound was checked and characterized by its infrared and NMR spectra.

Needle like colorless single crystals used in X-ray diffraction studies were grown in ethanolic solution by slow evaporation at room temperature.

Refinement

The H atom of the NH group was located in a difference map and its position refined with N—H = 0.86 (2) Å. The other H atoms were positioned with idealized geometry using a riding model with the aromatic C—H = 0.93 Å, methylene C—H = 0.97 Å and O—H = 0.82 Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

The atoms C9, C10, O2 and O3 are disordered and were refind using a split model. The corresponding site-occupation factors were fixed to 0.60:0.40 and their corresponding bond distances in the disordered groups were restrained to be equal. The Ueq of these atoms were restrained to approximate isotropic behavoir.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound, showing the atom labelling scheme and with displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Molecular packing of the title compound with hydrogen bonding shown as dashed lines.

Crystal data

C10H9Cl2NO3 F(000) = 536
Mr = 262.08 Dx = 1.528 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 987 reflections
a = 5.726 (1) Å θ = 2.9–27.7°
b = 4.787 (1) Å µ = 0.56 mm1
c = 41.583 (6) Å T = 293 K
β = 91.93 (2)° Needle, colourless
V = 1139.2 (4) Å3 0.44 × 0.16 × 0.09 mm
Z = 4

Data collection

Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector 2046 independent reflections
Radiation source: fine-focus sealed tube 1552 reflections with I > 2σ(I)
graphite Rint = 0.022
Rotation method data acquisition using ω scans θmax = 25.3°, θmin = 2.9°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) h = −5→6
Tmin = 0.791, Tmax = 0.951 k = −5→2
3375 measured reflections l = −50→37

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.077 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.171 H atoms treated by a mixture of independent and constrained refinement
S = 1.14 w = 1/[σ2(Fo2) + (0.0436P)2 + 4.544P] where P = (Fo2 + 2Fc2)/3
2046 reflections (Δ/σ)max = 0.048
185 parameters Δρmax = 0.75 e Å3
54 restraints Δρmin = −0.41 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Cl1 0.3416 (2) −0.1995 (3) 0.13931 (4) 0.0513 (4)
Cl2 0.8927 (3) 0.6671 (3) 0.22318 (3) 0.0460 (4)
O1 0.8848 (9) 0.5091 (8) 0.10285 (10) 0.0599 (13)
O2A 1.4182 (19) −0.004 (3) 0.0382 (2) 0.088 (4) 0.60
H2A 1.4940 −0.0747 0.0239 0.106* 0.60
O2B 1.325 (3) −0.072 (3) 0.0293 (4) 0.061 (4) 0.40
H2B 1.3972 −0.1171 0.0134 0.074* 0.40
O3A 1.259 (2) 0.248 (3) −0.0021 (3) 0.082 (4) 0.60
O3B 1.357 (4) 0.322 (4) 0.0053 (5) 0.096 (7) 0.40
N1 0.7824 (8) 0.0816 (9) 0.12040 (10) 0.0342 (10)
H1N 0.791 (9) −0.091 (5) 0.1164 (13) 0.041*
C1 0.6994 (8) 0.1621 (10) 0.15067 (11) 0.0296 (11)
C2 0.4967 (9) 0.0438 (11) 0.16233 (12) 0.0342 (12)
C3 0.4144 (9) 0.1202 (12) 0.19205 (13) 0.0402 (13)
H3 0.2780 0.0402 0.1994 0.048*
C4 0.5332 (9) 0.3132 (12) 0.21069 (13) 0.0412 (13)
H4 0.4777 0.3662 0.2305 0.049*
C5 0.7367 (9) 0.4276 (11) 0.19951 (12) 0.0334 (12)
C6 0.8201 (8) 0.3543 (11) 0.17001 (11) 0.0321 (12)
H6 0.9576 0.4337 0.1630 0.039*
C7 0.8798 (10) 0.2569 (11) 0.09932 (13) 0.0369 (13)
C8 0.9872 (12) 0.1158 (13) 0.07101 (14) 0.0516 (16)
H8A 1.1120 −0.0047 0.0791 0.062*
H8B 0.8695 −0.0031 0.0608 0.062*
C9A 1.082 (2) 0.297 (3) 0.0464 (2) 0.044 (3) 0.60
H9A 1.1601 0.4541 0.0568 0.053* 0.60
H9B 0.9545 0.3688 0.0329 0.053* 0.60
C9B 1.172 (3) 0.293 (5) 0.0582 (5) 0.058 (5) 0.40
H9C 1.2859 0.3277 0.0756 0.069* 0.40
H9D 1.1028 0.4709 0.0523 0.069* 0.40
C10A 1.253 (3) 0.145 (3) 0.0256 (4) 0.057 (4) 0.60
C10B 1.302 (4) 0.187 (4) 0.0298 (5) 0.043 (6) 0.40

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0426 (8) 0.0500 (9) 0.0613 (9) −0.0162 (7) 0.0020 (7) −0.0020 (8)
Cl2 0.0553 (9) 0.0455 (8) 0.0376 (7) −0.0051 (7) 0.0053 (6) −0.0069 (7)
O1 0.106 (4) 0.026 (2) 0.050 (3) −0.007 (2) 0.040 (2) −0.0065 (19)
O2A 0.092 (7) 0.118 (8) 0.055 (5) 0.027 (6) 0.018 (5) −0.009 (5)
O2B 0.068 (6) 0.056 (5) 0.062 (6) 0.002 (4) 0.031 (4) −0.004 (4)
O3A 0.075 (6) 0.109 (8) 0.065 (6) 0.019 (6) 0.017 (5) −0.005 (6)
O3B 0.110 (10) 0.081 (9) 0.099 (10) 0.001 (8) 0.038 (8) 0.009 (8)
N1 0.044 (2) 0.024 (2) 0.037 (2) −0.004 (2) 0.0166 (19) −0.004 (2)
C1 0.029 (2) 0.025 (3) 0.035 (3) 0.003 (2) 0.011 (2) 0.001 (2)
C2 0.031 (3) 0.030 (3) 0.042 (3) −0.003 (2) 0.005 (2) 0.001 (2)
C3 0.032 (3) 0.045 (3) 0.044 (3) −0.003 (3) 0.016 (2) 0.008 (3)
C4 0.042 (3) 0.046 (3) 0.037 (3) 0.004 (3) 0.020 (2) 0.005 (3)
C5 0.037 (3) 0.031 (3) 0.032 (3) 0.004 (2) 0.007 (2) 0.002 (2)
C6 0.028 (3) 0.033 (3) 0.037 (3) −0.001 (2) 0.013 (2) 0.005 (2)
C7 0.050 (3) 0.026 (3) 0.035 (3) −0.002 (2) 0.012 (2) −0.006 (2)
C8 0.069 (4) 0.043 (3) 0.045 (3) −0.007 (3) 0.027 (3) −0.012 (3)
C9A 0.062 (6) 0.039 (5) 0.032 (5) 0.007 (5) 0.013 (4) 0.002 (5)
C9B 0.064 (9) 0.050 (8) 0.061 (9) −0.001 (8) 0.018 (7) −0.011 (8)
C10A 0.061 (7) 0.041 (7) 0.073 (8) −0.009 (5) 0.043 (6) 0.002 (6)
C10B 0.048 (8) 0.037 (8) 0.045 (7) −0.001 (5) 0.009 (4) −0.004 (5)

Geometric parameters (Å, °)

Cl1—C2 1.733 (5) C3—H3 0.9300
Cl2—C5 1.739 (5) C4—C5 1.382 (7)
O1—C7 1.217 (6) C4—H4 0.9300
O2A—C10A 1.282 (15) C5—C6 1.377 (7)
O2A—H2A 0.8200 C6—H6 0.9300
O2B—C10B 1.246 (17) C7—C8 1.507 (7)
O2B—H2B 0.8200 C8—C9A 1.458 (12)
O3A—C10A 1.254 (12) C8—C9B 1.47 (2)
O3B—C10B 1.256 (15) C8—H8A 0.9700
N1—C7 1.348 (7) C8—H8B 0.9700
N1—C1 1.414 (6) C9A—C10A 1.516 (12)
N1—H1N 0.85 (2) C9A—H9A 0.9700
C1—C6 1.391 (7) C9A—H9B 0.9700
C1—C2 1.393 (7) C9B—C10B 1.505 (16)
C2—C3 1.386 (7) C9B—H9C 0.9700
C3—C4 1.372 (8) C9B—H9D 0.9700
C10A—O2A—H2A 109.5 C9A—C8—C7 117.0 (6)
C10B—O2B—H2B 109.5 C9B—C8—C7 110.1 (8)
C7—N1—C1 124.6 (4) C9A—C8—H8A 108.1
C7—N1—H1N 117 (4) C9B—C8—H8A 86.4
C1—N1—H1N 118 (4) C7—C8—H8A 108.1
C6—C1—C2 118.1 (4) C9A—C8—H8B 108.1
C6—C1—N1 121.3 (4) C9B—C8—H8B 132.7
C2—C1—N1 120.5 (4) C7—C8—H8B 108.1
C3—C2—C1 121.0 (5) H8A—C8—H8B 107.3
C3—C2—Cl1 119.1 (4) C8—C9A—C10A 112.3 (10)
C1—C2—Cl1 119.9 (4) C8—C9A—H9A 109.1
C4—C3—C2 120.3 (5) C10A—C9A—H9A 109.1
C4—C3—H3 119.8 C8—C9A—H9B 109.1
C2—C3—H3 119.8 C10A—C9A—H9B 109.1
C3—C4—C5 119.0 (5) H9A—C9A—H9B 107.9
C3—C4—H4 120.5 C8—C9B—C10B 118.2 (17)
C5—C4—H4 120.5 C8—C9B—H9C 107.8
C6—C5—C4 121.4 (5) C10B—C9B—H9C 107.7
C6—C5—Cl2 119.1 (4) C8—C9B—H9D 107.8
C4—C5—Cl2 119.6 (4) C10B—C9B—H9D 107.8
C5—C6—C1 120.2 (4) H9C—C9B—H9D 107.1
C5—C6—H6 119.9 O3A—C10A—O2A 123.5 (12)
C1—C6—H6 119.9 O3A—C10A—C9A 112.0 (11)
O1—C7—N1 123.3 (5) O2A—C10A—C9A 121.0 (14)
O1—C7—C8 122.0 (5) O2B—C10B—O3B 117.8 (19)
N1—C7—C8 114.7 (5) O2B—C10B—C9B 113.7 (18)
C9A—C8—C9B 27.7 (8) O3B—C10B—C9B 127.6 (18)
C7—N1—C1—C6 −39.9 (8) C1—N1—C7—O1 −7.7 (9)
C7—N1—C1—C2 142.0 (5) C1—N1—C7—C8 171.2 (5)
C6—C1—C2—C3 1.5 (8) O1—C7—C8—C9A −4.8 (11)
N1—C1—C2—C3 179.7 (5) N1—C7—C8—C9A 176.2 (7)
C6—C1—C2—Cl1 −179.4 (4) O1—C7—C8—C9B 24.5 (13)
N1—C1—C2—Cl1 −1.2 (7) N1—C7—C8—C9B −154.4 (10)
C1—C2—C3—C4 −0.6 (8) C9B—C8—C9A—C10A 79 (2)
Cl1—C2—C3—C4 −179.7 (4) C7—C8—C9A—C10A 160.8 (11)
C2—C3—C4—C5 −0.6 (8) C9A—C8—C9B—C10B −70 (2)
C3—C4—C5—C6 0.8 (8) C7—C8—C9B—C10B 179.8 (15)
C3—C4—C5—Cl2 −178.7 (4) C8—C9A—C10A—O3A 152.1 (15)
C4—C5—C6—C1 0.1 (8) C8—C9A—C10A—O2A −48 (2)
Cl2—C5—C6—C1 179.7 (4) C8—C9B—C10B—O2B −33 (3)
C2—C1—C6—C5 −1.3 (7) C8—C9B—C10B—O3B 136 (3)
N1—C1—C6—C5 −179.4 (5)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O2A—H2A···O3Ai 0.82 1.90 2.687 (15) 162.
O2B—H2B···O3Bi 0.82 1.90 2.64 (2) 150.
N1—H1N···O1ii 0.85 (2) 2.07 (2) 2.901 (6) 167 (5)

Symmetry codes: (i) −x+3, −y, −z; (ii) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: VM2110).

References

  1. Bhat, D. K. & Gowda, B. T. (2000). J. Indian Chem. Soc. 77, 279–284.
  2. Gowda, B. T., D’Souza, J. D. & Kumar, B. H. A. (2003). Z. Naturforsch. Teil A, 58, 51–56.
  3. Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o1975–o1976.
  4. Jagannathan, N. R., Rajan, S. S. & Subramanian, E. (1994). J. Chem. Crystallogr. 24, 75–78.
  5. Jayalakshmi, K. L. & Gowda, B. T. (2004). Z. Naturforsch. Teil A, 59, 491–500.
  6. Leiserowitz, L. (1976). Acta Cryst. B32, 775–802.
  7. Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  8. Saraswathi, B. S., Foro, S. & Gowda, B. T. (2011a). Acta Cryst. E67, o1879. [DOI] [PMC free article] [PubMed]
  9. Saraswathi, B. S., Foro, S. & Gowda, B. T. (2011b). Acta Cryst. E67, o1880. [DOI] [PMC free article] [PubMed]
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811028297/vm2110sup1.cif

e-67-o2093-sup1.cif (17KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811028297/vm2110Isup2.hkl

e-67-o2093-Isup2.hkl (100.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811028297/vm2110Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES