Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jul 23;67(Pt 8):o2103. doi: 10.1107/S1600536811028807

4-Methyl-N-[(Z)-3-(4-methyl­phen­ylsulfon­yl)-1,3-thia­zolidin-2-yl­idene]benzene­sulfonamide

Hui-Ling Hu a, Geng-Ren Yang a, Chun-Wei Yeh b,*
PMCID: PMC3213545  PMID: 22091122

Abstract

In the crystal structure of the title compound, C17H18N2O4S3, mol­ecules are connected into centrosymmetric dimers via weak inter­molecular C—H⋯π inter­actions. These dimers are further connected through a series of weak C—H⋯O hydrogen bonds, while futher C—H⋯π inter­actions involving the phenyl and thia­zoline rings are also observed. The thia­zolidine ring is twisted from the benzene rings rings by dihedral angles of 79.1 (1) and 85.0 (1)°, while the dihedral angle between two benzene rings is 76.0 (1)°.

Related literature

For background to N-heterocyclic sulfanilamide derivatives, see: Kuz’mina et al. (1962); Jensen & Thorsteinsson (1941); Hunter & Kolloff (1943); Hultquist et al. (1951). For a related synthesis, see: Razvodovskaya et al. (1990). graphic file with name e-67-o2103-scheme1.jpg

Experimental

Crystal data

  • C17H18N2O4S3

  • M r = 410.51

  • Monoclinic, Inline graphic

  • a = 9.3825 (2) Å

  • b = 14.4047 (2) Å

  • c = 14.2279 (3) Å

  • β = 102.666 (1)°

  • V = 1876.14 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.42 mm−1

  • T = 296 K

  • 0.40 × 0.40 × 0.40 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001) T min = 0.845, T max = 0.845

  • 17749 measured reflections

  • 4652 independent reflections

  • 3756 reflections with I > 2σ(I)

  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.107

  • S = 1.04

  • 4652 reflections

  • 236 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811028807/fj2445sup1.cif

e-67-o2103-sup1.cif (23.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811028807/fj2445Isup2.hkl

e-67-o2103-Isup2.hkl (227.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811028807/fj2445Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C4–C9 and C11–C16 benzene rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10BCg1i 0.97 2.91 3.567 (1) 127
C2—H2BCg2ii 0.97 3.09 3.821 (1) 134
C1—H1B⋯O1ii 0.97 2.59 3.394 (3) 141
C12—H12A⋯O3iii 0.93 2.47 3.318 (2) 151

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

We are grateful to the National Science Council of the Republic of China and the Nanya Institute of Technology for support.

supplementary crystallographic information

Comment

In a series of N-heterocyclic sulfanilamide derivatives which prepared and are investigating biologically one of the compounds, 2-sulfanilyl-aminothiazoline, proved to be of particular interest, both chemically and therapeutically. (Kuz'mina et al., 1962; Jensen et al., 1941; Hunter et al., 1943; Hultquist et al., 1951). The synthesis and character the 3-substituted 2-(thiophosphorylimino)thiazolidine compounds are also reported (Razvodovskaya et al., 1990). Within this project the crystal structure of the title compound was determined. The crystal structure features inversion-related dimers linked by the weak intermolecular C—H···pi interactions in the solid state, while Cg1 and Cg2 are the centers of C4—C9 and C11—C16 and these carbon atoms of mean devition from plane are 0.0008 and 0.0043 Å. Weak C—H···O hydrogen bonds among the molecules are also observed in the solid state. The thiazolidine and the phenyl rings are not coplanar but twisted with each other by an interplanar angles of 79.1 (1) and 85.0 (1)°, respectively, while the dihedral angle between two phenyl groups is 76.0 (1)°.

Experimental

The title compound was prepared according to a published procedure (Razvodovskaya et al., 1990). Block like crystals suitable for X-ray crystallography were obtained by slow evaporization of the solvent from a solution of the title compound in methanol.

Refinement

All the hydrogen atoms were discernible in the difference Fourier maps. However, they were situated into the idealized positions and constrained by the riding atom approximation: C—Hmethyl = 0.96 Å and C—Hmethylene = 0.97 Å while the methyls and methylenes were allowed to rotate about their respective axes; C—Haryl = 0.93 Å; Uiso(Hmethyl) = 1.5Ueq(Cmethyl); Uiso(Haryl or methylene) = 1.2Ueq(Caryl or methylene).

Figures

Fig. 1.

Fig. 1.

Crystal structure of the title compound with atom labeling and displacement ellipsoids drawn at the 30% probability level.

Crystal data

C17H18N2O4S3 F(000) = 856
Mr = 410.51 Dx = 1.453 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 8638 reflections
a = 9.3825 (2) Å θ = 2.4–28.2°
b = 14.4047 (2) Å µ = 0.42 mm1
c = 14.2279 (3) Å T = 296 K
β = 102.666 (1)° Block, colourless
V = 1876.14 (6) Å3 0.40 × 0.40 × 0.40 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer 4652 independent reflections
Radiation source: fine-focus sealed tube 3756 reflections with I > 2σ(I)
graphite Rint = 0.025
phi and ω scans θmax = 28.3°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 2001) h = −12→12
Tmin = 0.845, Tmax = 0.845 k = −15→19
17749 measured reflections l = −17→18

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037 H-atom parameters constrained
wR(F2) = 0.107 w = 1/[σ2(Fo2) + (0.0497P)2 + 0.6237P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max < 0.001
4652 reflections Δρmax = 0.29 e Å3
236 parameters Δρmin = −0.29 e Å3
0 restraints Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0091 (9)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.16502 (15) 0.17067 (10) 0.38640 (10) 0.0446 (3)
N2 0.08736 (15) 0.26664 (10) 0.25505 (10) 0.0448 (3)
S1 0.34585 (5) 0.17353 (4) 0.27357 (4) 0.06158 (16)
S2 0.10549 (5) 0.31474 (3) 0.15432 (3) 0.04983 (13)
S3 0.01808 (5) 0.19186 (3) 0.43270 (3) 0.04805 (13)
O1 −0.00727 (19) 0.38361 (9) 0.13422 (10) 0.0693 (4)
O2 0.25206 (18) 0.34381 (12) 0.15775 (11) 0.0739 (4)
O3 0.04496 (18) 0.13807 (11) 0.51854 (10) 0.0702 (4)
O4 0.00217 (15) 0.28956 (9) 0.43817 (10) 0.0580 (3)
C1 0.2585 (2) 0.08847 (14) 0.41762 (15) 0.0590 (5)
H1A 0.2091 0.0321 0.3909 0.071*
H1B 0.2818 0.0836 0.4873 0.071*
C2 0.3947 (2) 0.10280 (16) 0.38077 (16) 0.0664 (6)
H2A 0.4335 0.0436 0.3656 0.080*
H2B 0.4684 0.1338 0.4290 0.080*
C3 0.18420 (17) 0.21042 (11) 0.30207 (11) 0.0407 (3)
C4 0.06041 (19) 0.22754 (11) 0.06650 (12) 0.0431 (4)
C5 −0.08309 (19) 0.19554 (12) 0.04084 (13) 0.0481 (4)
H5A −0.1533 0.2177 0.0723 0.058*
C6 −0.1198 (2) 0.13072 (13) −0.03153 (14) 0.0534 (4)
H6A −0.2156 0.1094 −0.0486 0.064*
C7 −0.0173 (2) 0.09647 (13) −0.07954 (13) 0.0542 (4)
C8 0.1244 (2) 0.12907 (15) −0.05287 (14) 0.0607 (5)
H8A 0.1943 0.1068 −0.0844 0.073*
C9 0.1647 (2) 0.19422 (14) 0.01986 (14) 0.0538 (4)
H9A 0.2606 0.2152 0.0370 0.065*
C10 −0.0606 (3) 0.02670 (16) −0.15964 (16) 0.0787 (7)
H10A −0.1623 0.0119 −0.1675 0.118*
H10B −0.0034 −0.0287 −0.1439 0.118*
H10C −0.0438 0.0524 −0.2185 0.118*
C11 −0.12963 (18) 0.14496 (12) 0.34887 (12) 0.0460 (4)
C12 −0.1544 (2) 0.04982 (13) 0.35063 (15) 0.0578 (5)
H12A −0.0965 0.0124 0.3971 0.069*
C13 −0.2660 (2) 0.01228 (15) 0.28240 (17) 0.0652 (5)
H13A −0.2837 −0.0512 0.2836 0.078*
C14 −0.3526 (2) 0.06605 (15) 0.21206 (15) 0.0579 (5)
C15 −0.3267 (2) 0.16119 (15) 0.21243 (15) 0.0557 (5)
H15A −0.3850 0.1986 0.1661 0.067*
C16 −0.21635 (19) 0.20075 (13) 0.28026 (14) 0.0507 (4)
H16A −0.2002 0.2644 0.2800 0.061*
C17 −0.4719 (3) 0.0231 (2) 0.13607 (19) 0.0864 (8)
H17A −0.4738 −0.0427 0.1461 0.130*
H17B −0.4536 0.0354 0.0735 0.130*
H17C −0.5644 0.0494 0.1403 0.130*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0461 (7) 0.0435 (7) 0.0418 (7) 0.0049 (6) 0.0045 (6) −0.0002 (6)
N2 0.0453 (7) 0.0459 (8) 0.0429 (7) 0.0017 (6) 0.0095 (6) 0.0013 (6)
S1 0.0508 (3) 0.0734 (3) 0.0623 (3) 0.0140 (2) 0.0163 (2) −0.0073 (2)
S2 0.0627 (3) 0.0401 (2) 0.0470 (2) −0.00536 (18) 0.0128 (2) 0.00129 (17)
S3 0.0555 (3) 0.0491 (3) 0.0406 (2) −0.00057 (18) 0.01281 (18) −0.00071 (17)
O1 0.1039 (12) 0.0425 (7) 0.0589 (8) 0.0189 (7) 0.0122 (8) 0.0043 (6)
O2 0.0802 (10) 0.0758 (10) 0.0684 (9) −0.0367 (8) 0.0217 (8) −0.0044 (8)
O3 0.0878 (11) 0.0805 (10) 0.0427 (7) 0.0010 (8) 0.0149 (7) 0.0108 (7)
O4 0.0645 (8) 0.0504 (7) 0.0619 (8) 0.0006 (6) 0.0197 (7) −0.0130 (6)
C1 0.0684 (12) 0.0496 (10) 0.0521 (10) 0.0146 (9) −0.0017 (9) 0.0011 (8)
C2 0.0637 (12) 0.0655 (13) 0.0631 (12) 0.0251 (10) −0.0009 (10) −0.0143 (10)
C3 0.0399 (8) 0.0402 (8) 0.0402 (8) −0.0027 (6) 0.0052 (6) −0.0082 (6)
C4 0.0484 (9) 0.0396 (8) 0.0416 (8) 0.0018 (7) 0.0110 (7) 0.0055 (7)
C5 0.0472 (9) 0.0468 (9) 0.0520 (10) 0.0050 (7) 0.0144 (7) 0.0031 (8)
C6 0.0529 (10) 0.0479 (10) 0.0546 (10) −0.0025 (8) 0.0014 (8) 0.0027 (8)
C7 0.0726 (12) 0.0458 (10) 0.0403 (9) 0.0106 (9) 0.0041 (8) 0.0038 (7)
C8 0.0659 (12) 0.0680 (13) 0.0519 (11) 0.0153 (10) 0.0210 (9) −0.0008 (9)
C9 0.0484 (9) 0.0636 (11) 0.0512 (10) 0.0007 (8) 0.0153 (8) 0.0020 (8)
C10 0.1124 (19) 0.0631 (13) 0.0513 (12) 0.0143 (13) −0.0025 (12) −0.0083 (10)
C11 0.0473 (9) 0.0452 (9) 0.0478 (9) −0.0052 (7) 0.0155 (7) 0.0038 (7)
C12 0.0651 (12) 0.0470 (10) 0.0626 (12) −0.0066 (9) 0.0171 (9) 0.0100 (9)
C13 0.0710 (13) 0.0470 (11) 0.0826 (15) −0.0152 (9) 0.0279 (11) −0.0052 (10)
C14 0.0491 (10) 0.0687 (12) 0.0607 (11) −0.0102 (9) 0.0226 (9) −0.0147 (10)
C15 0.0441 (9) 0.0665 (12) 0.0578 (11) −0.0001 (8) 0.0139 (8) 0.0053 (9)
C16 0.0467 (9) 0.0451 (9) 0.0622 (11) −0.0022 (7) 0.0157 (8) 0.0064 (8)
C17 0.0689 (14) 0.0996 (19) 0.0894 (18) −0.0144 (13) 0.0148 (13) −0.0413 (15)

Geometric parameters (Å, °)

N1—C3 1.376 (2) C6—H6A 0.9300
N1—C1 1.483 (2) C7—C8 1.382 (3)
N1—S3 1.6811 (15) C7—C10 1.507 (3)
N2—C3 1.289 (2) C8—C9 1.387 (3)
N2—S2 1.6340 (15) C8—H8A 0.9300
S1—C3 1.7368 (16) C9—H9A 0.9300
S1—C2 1.808 (2) C10—H10A 0.9600
S2—O2 1.4282 (15) C10—H10B 0.9600
S2—O1 1.4327 (15) C10—H10C 0.9600
S2—C4 1.7566 (17) C11—C16 1.383 (3)
S3—O4 1.4192 (14) C11—C12 1.391 (3)
S3—O3 1.4215 (14) C12—C13 1.373 (3)
S3—C11 1.7536 (18) C12—H12A 0.9300
C1—C2 1.498 (3) C13—C14 1.380 (3)
C1—H1A 0.9700 C13—H13A 0.9300
C1—H1B 0.9700 C14—C15 1.392 (3)
C2—H2A 0.9700 C14—C17 1.508 (3)
C2—H2B 0.9700 C15—C16 1.375 (3)
C4—C9 1.383 (2) C15—H15A 0.9300
C4—C5 1.394 (2) C16—H16A 0.9300
C5—C6 1.377 (3) C17—H17A 0.9600
C5—H5A 0.9300 C17—H17B 0.9600
C6—C7 1.386 (3) C17—H17C 0.9600
C3—N1—C1 114.30 (15) C7—C6—H6A 119.2
C3—N1—S3 122.77 (11) C8—C7—C6 118.23 (17)
C1—N1—S3 120.66 (13) C8—C7—C10 121.2 (2)
C3—N2—S2 121.62 (12) C6—C7—C10 120.6 (2)
C3—S1—C2 92.76 (9) C7—C8—C9 121.55 (18)
O2—S2—O1 117.85 (10) C7—C8—H8A 119.2
O2—S2—N2 112.27 (9) C9—C8—H8A 119.2
O1—S2—N2 104.73 (8) C4—C9—C8 119.15 (18)
O2—S2—C4 108.29 (9) C4—C9—H9A 120.4
O1—S2—C4 107.52 (9) C8—C9—H9A 120.4
N2—S2—C4 105.40 (8) C7—C10—H10A 109.5
O4—S3—O3 119.63 (9) C7—C10—H10B 109.5
O4—S3—N1 107.86 (8) H10A—C10—H10B 109.5
O3—S3—N1 103.39 (8) C7—C10—H10C 109.5
O4—S3—C11 110.02 (9) H10A—C10—H10C 109.5
O3—S3—C11 109.83 (9) H10B—C10—H10C 109.5
N1—S3—C11 104.90 (8) C16—C11—C12 120.69 (18)
N1—C1—C2 106.21 (17) C16—C11—S3 120.74 (14)
N1—C1—H1A 110.5 C12—C11—S3 118.52 (15)
C2—C1—H1A 110.5 C13—C12—C11 118.67 (19)
N1—C1—H1B 110.5 C13—C12—H12A 120.7
C2—C1—H1B 110.5 C11—C12—H12A 120.7
H1A—C1—H1B 108.7 C12—C13—C14 121.87 (19)
C1—C2—S1 107.17 (13) C12—C13—H13A 119.1
C1—C2—H2A 110.3 C14—C13—H13A 119.1
S1—C2—H2A 110.3 C13—C14—C15 118.41 (19)
C1—C2—H2B 110.3 C13—C14—C17 121.1 (2)
S1—C2—H2B 110.3 C15—C14—C17 120.5 (2)
H2A—C2—H2B 108.5 C16—C15—C14 120.96 (19)
N2—C3—N1 120.10 (15) C16—C15—H15A 119.5
N2—C3—S1 128.55 (13) C14—C15—H15A 119.5
N1—C3—S1 111.35 (12) C15—C16—C11 119.39 (17)
C9—C4—C5 120.25 (17) C15—C16—H16A 120.3
C9—C4—S2 120.28 (14) C11—C16—H16A 120.3
C5—C4—S2 119.40 (13) C14—C17—H17A 109.5
C6—C5—C4 119.28 (17) C14—C17—H17B 109.5
C6—C5—H5A 120.4 H17A—C17—H17B 109.5
C4—C5—H5A 120.4 C14—C17—H17C 109.5
C5—C6—C7 121.53 (18) H17A—C17—H17C 109.5
C5—C6—H6A 119.2 H17B—C17—H17C 109.5

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C4–C9 and C11–C16 benzene rings, respectively.
D—H···A D—H H···A D···A D—H···A
C10—H10B···Cg1i 0.97 2.91 3.567 (1) 127
C2—H2B···Cg2ii 0.97 3.09 3.821 (1) 134
C1—H1B···O1ii 0.97 2.59 3.394 (3) 141
C12—H12A···O3iii 0.93 2.47 3.318 (2) 151

Symmetry codes: (i) −x, −y, −z; (ii) x+1/2, −y+1/2, z+1/2; (iii) −x, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2445).

References

  1. Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Bruker (2010). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Hultquist, M. E., Germann, R. P., Webb, J. S., Wright, W. B. Jr, Roth, B., Smith, J. M. Jr & SubbaRow, Y. (1951). J. Am. Chem. Soc. 73, 2558–2566.
  4. Hunter, J. H. & Kolloff, H. G. (1943). J. Am. Chem. Soc. 65, 156–159.
  5. Jensen, K. A. & Thorsteinsson, T. (1941). Dansk Tidsskrift Farmaci, 15, 41–77.
  6. Kuz’mina, K. K., Ostroumova, N. G., Markova, Yu. V. & Shchukina, M. N. (1962). Zhurnal Obshchei Khimii. 32, 3390–3393.
  7. Razvodovskaya, L. V., Vorob’eva, N. N., Grapov, A. F. & Mel’nikov, N. N. (1990). Zhurnal Obshchei Khimii, 60, 1518–1525.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811028807/fj2445sup1.cif

e-67-o2103-sup1.cif (23.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811028807/fj2445Isup2.hkl

e-67-o2103-Isup2.hkl (227.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811028807/fj2445Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES