Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jul 23;67(Pt 8):o2110. doi: 10.1107/S1600536811028339

4-{[1-(4-Bromo­phen­yl)eth­yl]amino­meth­yl}phenol

Karilys Gonzalez Nieves a,*
PMCID: PMC3213552  PMID: 22091129

Abstract

The title compound, C15H16BrNO, obtained from a two-step reaction, was prepared for use in transition metal chemistry as a phenolic ligand with bulky substituents. Inter­molecular N—H⋯O and O—H⋯N hydrogen bonds are present in the crystal structure.

Related literature

For chirality induction in metal complexes, see: Fan et al. (2010); Amendola et al. (2010). For imine reduction, see: Menta & Prabhakar (1995).graphic file with name e-67-o2110-scheme1.jpg

Experimental

Crystal data

  • C15H16BrNO

  • M r = 306.20

  • Monoclinic, Inline graphic

  • a = 12.1753 (10) Å

  • b = 8.1939 (7) Å

  • c = 14.0326 (11) Å

  • β = 93.333 (1)°

  • V = 1397.6 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.93 mm−1

  • T = 296 K

  • 0.20 × 0.16 × 0.14 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008a ) T min = 0.592, T max = 0.685

  • 14961 measured reflections

  • 3094 independent reflections

  • 2119 reflections with I > 2σ(I)

  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.031

  • wR(F 2) = 0.077

  • S = 1.00

  • 3094 reflections

  • 168 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.40 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b ); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b ); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811028339/fy2015sup1.cif

e-67-o2110-sup1.cif (22KB, cif)

Supplementary material file. DOI: 10.1107/S1600536811028339/fy2015Isup2.cml

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811028339/fy2015Isup3.hkl

e-67-o2110-Isup3.hkl (151.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N1i 0.82 2.05 2.794 (2) 150
N1—H1⋯O1ii 0.75 (2) 2.40 (2) 3.144 (3) 168 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This work was supported by the NASA Space Grant (grant No. nnx10am80h). The author thanks Professor R. G. Raptis for providing access to the X-ray diffractometer and also thanks Dr Indranil Chakraborty for his help with the structure refinement.

supplementary crystallographic information

Comment

The title compound was prepared to be used as a ligand in order to induce chirality in transition metal complexes in combination with other bridging ligands. Here, we report the crystal structure of racemic 4-((1-(4-bromophenyl)ethylamino)methyl)phenol. In the crystal structure (Fig. 4), intermolecular hydrogen bonding was observed between N1—H1···O1 and O1—H1A···N1 (Table 1).

Experimental

An excess of racemic 4-bromo-α-methylbenzylamine (0.069 g, 0.45 mmol) was added to a solution of 4-hydroxybenzaldehyde (0.036 g, 0.29 mmol) in ethyl acetate. The solution was stirred overnight at room temperature. The solvent was removed under vacuum to obtain 4-((1-(4-bromophenyl)ethylimino)methyl)phenol as a white solid. The Schiff base was dissolved in anhydrous MeOH and an excess of NaBH4 was added in several portions to the reaction mixture. After 24 h, water was added to the solution, and stirring was continued for two more hours. Methanol was removed under vacuum and the remaining aqueous phase was extracted three times with ethyl acetate. The combinated organic extracts were dried with magnesium sulfate, and the solvent was removed under vacuum to obtain a white solid. The product was dissolved in acetone and crystals were obtained by vapor diffusion of pentane.

Refinement

All non-H atoms were refined anisotropically. H atoms were positioned geometrically (except the H on the N), with C—H = 0.96 (CH3), 0.97 (CH2), 0.98 (CH) and 0.93 (aromatic CH) Å, O—H = 0.82 Å and constrained with Uiso(H) = 1.5 Ueq(parent) for methyl H and O—H and Uiso(H) = 1.2 Ueq(parent) for all other H atoms. The H on the N atom was generated with N—H = 0.87 Å, Uiso(H) = 0.033.

Figures

Fig. 1.

Fig. 1.

Molecular structure of compound (I) with 50% probability displacement ellipsoid for non hydrogen atoms.

Fig. 2.

Fig. 2.

Packing diagram of compound (I).

Fig. 3.

Fig. 3.

Molecular view along a axis.

Fig. 4.

Fig. 4.

Molecular structure of compound (I) with hydrogen bonding.

Crystal data

C15H16BrNO F(000) = 624
Mr = 306.20 Dx = 1.455 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 5896 reflections
a = 12.1753 (10) Å θ = 2.3–26.2°
b = 8.1939 (7) Å µ = 2.93 mm1
c = 14.0326 (11) Å T = 296 K
β = 93.333 (1)° Block, colourless
V = 1397.6 (2) Å3 0.20 × 0.16 × 0.14 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer 3094 independent reflections
Radiation source: fine-focus sealed tube 2119 reflections with I > 2σ(I)
graphite Rint = 0.031
φ and ω scans θmax = 27.2°, θmin = 2.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 2008a) h = −15→15
Tmin = 0.592, Tmax = 0.685 k = −10→10
14961 measured reflections l = −17→18

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.077 H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.031P)2 + 0.5405P] where P = (Fo2 + 2Fc2)/3
3094 reflections (Δ/σ)max = 0.002
168 parameters Δρmax = 0.25 e Å3
0 restraints Δρmin = −0.40 e Å3

Special details

Experimental. IR (KBr cm-1): 3448 (m), 3280 (m), 2970 (m), 2824 (m), 1613 (m, C=C), 1592 (m), 1516 (s), 1469 (m), 1373 (m), 1251 (s), 1174 (m), 1009 (s), 862 (w), 829 (s), 635 (w), 501 (w). 1H-NMR (500 MHz, d6-acetone) p.p.m.: 1.28–1.30 (d, 3H, CH3), 3.44–3.52 (dd, 2H, –CH2NH), 3.77–3.81 (m, 1H, CHCH3), 6.75–6.77 (d, 2H, aromatic protons in the phenyl ring), 7.10–7.11 (d, 2H, aromatic protons in bromophenyl ring), 7.35–7.37 (d, 2H, aromatic protons in bromophenyl ring), 7.48–7.50 (d, 2H, aromatic protons in the phenyl ring). 13C-NMR (125 MHz, d6-acetone) p.p.m.: 24.7 (CH3CH–), 51.5 (–CH2NH), 57.5 (–CHCH3), 115.8 and 132.1 (aromatic carbons in the phenyl ring), 132.1 (quaternary carbon), 120.6 (quaternary carbon, Br), 129.7 and 130.1 (aromatic carbons in the bromophenyl ring), 157.1 (quaternary carbon, OH).
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.50613 (2) 1.10683 (4) 0.22306 (2) 0.07679 (13)
C1 0.57389 (19) 0.9552 (3) 0.14304 (16) 0.0493 (5)
C2 0.51175 (19) 0.8545 (3) 0.08329 (17) 0.0548 (6)
H2 0.4354 0.8616 0.0801 0.066*
C3 0.56405 (18) 0.7419 (3) 0.02779 (16) 0.0491 (5)
H3 0.5220 0.6728 −0.0123 0.059*
C4 0.67743 (17) 0.7301 (3) 0.03077 (15) 0.0433 (5)
C5 0.73784 (19) 0.8363 (3) 0.09060 (18) 0.0585 (6)
H5 0.8143 0.8322 0.0927 0.070*
C6 0.6869 (2) 0.9475 (3) 0.14675 (18) 0.0574 (6)
H6 0.7285 1.0170 0.1869 0.069*
C7 0.73506 (19) 0.6046 (3) −0.02810 (15) 0.0477 (5)
H7 0.6796 0.5310 −0.0577 0.057*
C8 0.7982 (2) 0.6822 (3) −0.10623 (18) 0.0675 (7)
H8A 0.8519 0.7565 −0.0783 0.101*
H8B 0.7481 0.7406 −0.1492 0.101*
H8C 0.8346 0.5988 −0.1406 0.101*
C9 0.75156 (18) 0.3972 (3) 0.09742 (17) 0.0533 (6)
H9A 0.7273 0.3024 0.0606 0.064*
H9B 0.6866 0.4527 0.1178 0.064*
C10 0.81988 (17) 0.3415 (3) 0.18429 (15) 0.0433 (5)
C11 0.78927 (19) 0.3829 (3) 0.27448 (17) 0.0533 (6)
H11 0.7270 0.4470 0.2805 0.064*
C12 0.8484 (2) 0.3320 (3) 0.35547 (17) 0.0567 (6)
H12 0.8266 0.3631 0.4152 0.068*
C13 0.94031 (17) 0.2344 (3) 0.34832 (16) 0.0464 (5)
C14 0.97270 (17) 0.1923 (3) 0.25915 (16) 0.0511 (6)
H14 1.0348 0.1279 0.2533 0.061*
C15 0.91298 (18) 0.2458 (3) 0.17840 (16) 0.0518 (6)
H15 0.9359 0.2168 0.1186 0.062*
N1 0.81141 (15) 0.5077 (2) 0.03586 (14) 0.0449 (4)
O1 0.99339 (13) 0.1835 (2) 0.43153 (11) 0.0617 (4)
H1A 1.0488 0.1325 0.4195 0.093*
H1 0.8475 (17) 0.456 (3) 0.0064 (14) 0.033 (6)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0736 (2) 0.0705 (2) 0.0891 (2) 0.00063 (14) 0.02858 (15) −0.02241 (16)
C1 0.0551 (13) 0.0417 (12) 0.0522 (13) 0.0010 (10) 0.0123 (11) 0.0010 (11)
C2 0.0435 (12) 0.0577 (15) 0.0637 (15) −0.0006 (11) 0.0079 (11) −0.0007 (12)
C3 0.0467 (12) 0.0487 (13) 0.0512 (13) −0.0049 (10) −0.0029 (10) −0.0018 (11)
C4 0.0472 (12) 0.0412 (11) 0.0411 (12) 0.0027 (10) −0.0006 (9) 0.0042 (10)
C5 0.0421 (12) 0.0566 (14) 0.0763 (17) 0.0020 (11) −0.0012 (12) −0.0133 (13)
C6 0.0556 (14) 0.0496 (13) 0.0665 (16) −0.0027 (11) −0.0014 (12) −0.0107 (12)
C7 0.0506 (12) 0.0489 (12) 0.0427 (12) 0.0025 (10) −0.0040 (10) 0.0009 (11)
C8 0.0771 (18) 0.0749 (18) 0.0510 (14) 0.0131 (15) 0.0094 (13) 0.0074 (13)
C9 0.0430 (12) 0.0539 (13) 0.0626 (15) −0.0028 (11) −0.0008 (11) 0.0085 (12)
C10 0.0399 (11) 0.0394 (11) 0.0506 (13) −0.0017 (9) 0.0035 (10) 0.0084 (10)
C11 0.0475 (13) 0.0493 (13) 0.0641 (15) 0.0123 (10) 0.0108 (11) 0.0055 (12)
C12 0.0605 (15) 0.0623 (15) 0.0489 (14) 0.0114 (12) 0.0153 (12) 0.0037 (12)
C13 0.0433 (11) 0.0479 (12) 0.0483 (13) 0.0001 (10) 0.0070 (10) 0.0112 (10)
C14 0.0435 (12) 0.0584 (14) 0.0524 (14) 0.0099 (10) 0.0107 (11) 0.0078 (11)
C15 0.0477 (13) 0.0623 (15) 0.0462 (13) 0.0050 (11) 0.0091 (10) 0.0009 (11)
N1 0.0432 (10) 0.0470 (11) 0.0448 (11) 0.0061 (9) 0.0044 (9) 0.0020 (9)
O1 0.0559 (10) 0.0796 (12) 0.0501 (9) 0.0145 (9) 0.0084 (8) 0.0167 (9)

Geometric parameters (Å, °)

Br1—C1 1.895 (2) C9—N1 1.473 (3)
C1—C6 1.375 (3) C9—C10 1.506 (3)
C1—C2 1.372 (3) C9—H9A 0.9700
C2—C3 1.386 (3) C9—H9B 0.9700
C2—H2 0.9300 C10—C11 1.382 (3)
C3—C4 1.382 (3) C10—C15 1.384 (3)
C3—H3 0.9300 C11—C12 1.375 (3)
C4—C5 1.390 (3) C11—H11 0.9300
C4—C7 1.516 (3) C12—C13 1.384 (3)
C5—C6 1.376 (3) C12—H12 0.9300
C5—H5 0.9300 C13—O1 1.366 (3)
C6—H6 0.9300 C13—C14 1.377 (3)
C7—N1 1.484 (3) C14—C15 1.382 (3)
C7—C8 1.515 (3) C14—H14 0.9300
C7—H7 0.9800 C15—H15 0.9300
C8—H8A 0.9600 N1—H1 0.75 (2)
C8—H8B 0.9600 O1—H1A 0.8200
C8—H8C 0.9600
C6—C1—C2 120.7 (2) H8B—C8—H8C 109.5
C6—C1—Br1 118.46 (18) N1—C9—C10 113.10 (18)
C2—C1—Br1 120.85 (18) N1—C9—H9A 109.0
C1—C2—C3 119.3 (2) C10—C9—H9A 109.0
C1—C2—H2 120.4 N1—C9—H9B 109.0
C3—C2—H2 120.4 C10—C9—H9B 109.0
C4—C3—C2 121.3 (2) H9A—C9—H9B 107.8
C4—C3—H3 119.3 C11—C10—C15 117.3 (2)
C2—C3—H3 119.3 C11—C10—C9 120.04 (19)
C3—C4—C5 117.8 (2) C15—C10—C9 122.6 (2)
C3—C4—C7 121.6 (2) C12—C11—C10 121.7 (2)
C5—C4—C7 120.55 (19) C12—C11—H11 119.1
C6—C5—C4 121.3 (2) C10—C11—H11 119.1
C6—C5—H5 119.3 C11—C12—C13 120.2 (2)
C4—C5—H5 119.3 C11—C12—H12 119.9
C1—C6—C5 119.5 (2) C13—C12—H12 119.9
C1—C6—H6 120.3 O1—C13—C14 123.6 (2)
C5—C6—H6 120.3 O1—C13—C12 117.3 (2)
N1—C7—C4 109.06 (17) C14—C13—C12 119.1 (2)
N1—C7—C8 109.62 (19) C13—C14—C15 120.1 (2)
C4—C7—C8 112.33 (19) C13—C14—H14 120.0
N1—C7—H7 108.6 C15—C14—H14 120.0
C4—C7—H7 108.6 C10—C15—C14 121.6 (2)
C8—C7—H7 108.6 C10—C15—H15 119.2
C7—C8—H8A 109.5 C14—C15—H15 119.2
C7—C8—H8B 109.5 C9—N1—C7 111.68 (17)
H8A—C8—H8B 109.5 C9—N1—H1 107.4 (16)
C7—C8—H8C 109.5 C7—N1—H1 109.6 (16)
H8A—C8—H8C 109.5 C13—O1—H1A 109.5
C6—C1—C2—C3 1.3 (4) N1—C9—C10—C15 −64.5 (3)
Br1—C1—C2—C3 −178.17 (17) C15—C10—C11—C12 0.1 (3)
C1—C2—C3—C4 −0.6 (3) C9—C10—C11—C12 178.9 (2)
C2—C3—C4—C5 −0.7 (3) C10—C11—C12—C13 −1.0 (4)
C2—C3—C4—C7 178.6 (2) C11—C12—C13—O1 −177.9 (2)
C3—C4—C5—C6 1.4 (4) C11—C12—C13—C14 1.4 (4)
C7—C4—C5—C6 −178.0 (2) O1—C13—C14—C15 178.5 (2)
C2—C1—C6—C5 −0.7 (4) C12—C13—C14—C15 −0.8 (4)
Br1—C1—C6—C5 178.81 (19) C11—C10—C15—C14 0.5 (3)
C4—C5—C6—C1 −0.7 (4) C9—C10—C15—C14 −178.2 (2)
C3—C4—C7—N1 −126.1 (2) C13—C14—C15—C10 −0.2 (4)
C5—C4—C7—N1 53.2 (3) C10—C9—N1—C7 −160.10 (19)
C3—C4—C7—C8 112.2 (2) C4—C7—N1—C9 71.1 (2)
C5—C4—C7—C8 −68.5 (3) C8—C7—N1—C9 −165.5 (2)
N1—C9—C10—C11 116.7 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1A···N1i 0.82 2.05 2.794 (2) 150.
N1—H1···O1ii 0.75 (2) 2.40 (2) 3.144 (3) 168 (2)

Symmetry codes: (i) −x+2, y−1/2, −z+1/2; (ii) x, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FY2015).

References

  1. Amendola, V., Boiocchi, M., Brega, V., Fabbrizzi, L. & Mosca, L. (2010). Inorg. Chem. 49, 997–1007. [DOI] [PubMed]
  2. Bruker (1999). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2005). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Fan, L. L., Guo, F. S., Yun, L., Lin, Z. J., Herchel, R. & Leng, J. D. (2010). Dalton Trans 39, 1771–1780. [DOI] [PubMed]
  5. Menta, G. & Prabhakar, C. (1995). J. Org. Chem 60, 4638–4640.
  6. Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.
  7. Sheldrick, G. M. (2008b). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811028339/fy2015sup1.cif

e-67-o2110-sup1.cif (22KB, cif)

Supplementary material file. DOI: 10.1107/S1600536811028339/fy2015Isup2.cml

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811028339/fy2015Isup3.hkl

e-67-o2110-Isup3.hkl (151.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES