Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jul 23;67(Pt 8):o2116. doi: 10.1107/S1600536811029138

4-Nitro-N-phthalyl-l-tryptophan

Anaelle Tilborg a, Irving Boittiaux b, Bernadette Norberg a, Didier Lambert b, Johan Wouters a,*
PMCID: PMC3213557  PMID: 22091134

Abstract

The crystal structure of the title compound [systematic name: (2R)-3-(1H-indol-3-yl)-2-(4-nitro-1,3-dioxoisoindolin-2-yl)propanoic acid], C19H13N3O6, an analogue of epigenetic modulator RG108, is constrained by strong hydrogen bonds between the indole N—H group and a carbonyl O atom of the phthalimide ring of a symmetry-related mol­ecule, and between the protonated O atom of the carboxyl group and a carbonyl O atom of the phthalimide ring. π–π stacking inter­actions with centroid–centroid distances of 3.638 (1) and 3.610 (1) Å are also observed between indole and phthalimide rings.

Related literature

For crystallographic information and details of the RG108 analogue, see: Braun et al. (2010) and for details of the biological evaluation, see: Brueckner et al. (2005).graphic file with name e-67-o2116-scheme1.jpg

Experimental

Crystal data

  • C19H13N3O6

  • M r = 379.33

  • Monoclinic, Inline graphic

  • a = 7.0569 (3) Å

  • b = 15.5302 (8) Å

  • c = 7.6947 (4) Å

  • β = 95.415 (4)°

  • V = 839.54 (7) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.97 mm−1

  • T = 293 K

  • 0.22 × 0.10 × 0.03 mm

Data collection

  • Oxford Diffraction Xcalibur Ruby Gemini ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) T min = 0.815, T max = 0.972

  • 9007 measured reflections

  • 2966 independent reflections

  • 2735 reflections with I > 2σ(I)

  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.031

  • wR(F 2) = 0.091

  • S = 1.06

  • 2966 reflections

  • 262 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.13 e Å−3

  • Absolute structure: Flack (1983), 1371 Friedel pairs

  • Flack parameter: −0.1 (2)

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811029138/vm2109sup1.cif

e-67-o2116-sup1.cif (21KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811029138/vm2109Isup2.hkl

e-67-o2116-Isup2.hkl (142.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811029138/vm2109Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1i 0.86 (4) 2.28 (4) 3.002 (3) 142 (4)
O4—H1⋯O2ii 1.00 (4) 1.78 (4) 2.716 (2) 154 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This work was supported in part by the Fonds National de la Recherche Scientifique (FRS – FNRS, Belgium) by a Télévie grant (IB). AT acknowledges the FRIA (Fonds pour la formation à la Recherche dans l’Industrie et dans l’Agriculture) for financial support.

supplementary crystallographic information

Comment

4-Nitro-N-phthalyl-L-tryptophan is an analog of RG108, a DNA methyltransferase (DNMT) inhibitor discovered by virtual screening (Brueckner et al. (2005)). Introduction of a nitro functional group on the phtalimide moiety is excepted to improve inhibition ability (unpublished results).

Isomer S (C9) of 4-nitro-N-phthalyl-tryptophan is obtained from L-tryptophan and nitrophthalic anhydride in DMF.

Two main types of H-bonding interactions are observed in the structure: one between N—H of the indole ring (N2) and O1 of the phtalimide ring, and the other between the protonated oxygen (O4) from the carboxylic moiety and O2 from the phtalimide ring (see Table 1).

In addition to H-bonds, crystal packing organization is further stabilized by π–π-stacking interactions involving symmetry-related molecules, in particularly between the 6-membered coupled rings of nitrophthalimide and indole moiety (see Table 2). No interactions of this type are present in the packing of the dicyclohexylamine salt of RG108 (Braun et al. (2010), because of the presence of the ammonium counter-cation and water molecules included in the crystalline network.

In contrast to the structure of the dicyclohexylamine salt of RG108 (Braun et al. (2010)), where the compound conformation is constrained by strong (charge-assisted) H-bonds with the dicyclohexylammonium ion and extra water molecules, the angle between the two fused rings is 14.23 (4)° in the present structure compared to 58.35 (4)° in the case of the RG108 salt. The torsion angle of the chain between the two aromatic moieties (N1—C9—C10—C11) is also distinct: -155.66 (17)° and -61.93 (17) ° for the title and RG108 salt structures, respectively.

Experimental

Synthesis of the compound was accomplished by micro-wave heating of L-tryptophan (1 mmol, 204 mg) and 4-nitro phthalic anhydride (1 mmol, 193 mg) in 5 ml of DMF. The mixture was then poured in cold aqueous buffer solution (pH = 2) and extracted with ethyl acetate. After drying with Na2SO4, the organic phase is evaporated and the residue is purified by flash chromatography (dichloromethane and methanol: 9/1; yield = 60%, 230 mg).

Refinement

H1 and H2, bound to O4 and N2 respectively and involved in hydrogen bonds, were located from ΔF Fourier difference maps and their position refined freely. All other remaining H-atoms were placed at idealized positions and allowed to ride on their parent atoms, with C—H distances of 0.93 – 0.98 Å and with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

ORTEP view and atom numbering of the title compound. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.

Crystal data

C19H13N3O6 F(000) = 392
Mr = 379.33 Dx = 1.501 Mg m3
Monoclinic, P21 Cu Kα radiation, λ = 1.54184 Å
Hall symbol: P 2yb Cell parameters from 4268 reflections
a = 7.0569 (3) Å θ = 2.8–67.9°
b = 15.5302 (8) Å µ = 0.97 mm1
c = 7.6947 (4) Å T = 293 K
β = 95.415 (4)° Prism, yellow
V = 839.54 (7) Å3 0.22 × 0.10 × 0.03 mm
Z = 2

Data collection

Oxford Diffraction Xcalibur Ruby Gemini ultra diffractometer 2966 independent reflections
Radiation source: fine-focus sealed tube 2735 reflections with I > 2σ(I)
graphite Rint = 0.029
Detector resolution: 10.3712 pixels mm-1 θmax = 68.0°, θmin = 5.7°
ω scans h = −8→8
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) k = −18→17
Tmin = 0.815, Tmax = 0.972 l = −9→8
9007 measured reflections

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.031 w = 1/[σ2(Fo2) + (0.0492P)2 + 0.1477P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.091 (Δ/σ)max < 0.001
S = 1.06 Δρmax = 0.15 e Å3
2966 reflections Δρmin = −0.13 e Å3
262 parameters Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraint Extinction coefficient: 0.0080 (8)
0 constraints Absolute structure: Flack (1983), 1371 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: −0.1 (2)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.7937 (3) 0.58969 (13) 0.3293 (3) 0.0401 (4)
C2 0.8237 (3) 0.64858 (13) 0.4829 (3) 0.0385 (4)
C3 0.7949 (3) 0.73572 (14) 0.5072 (3) 0.0427 (5)
C4 0.8157 (3) 0.77052 (15) 0.6745 (3) 0.0481 (5)
H4 0.7881 0.8283 0.6913 0.058*
C5 0.8772 (3) 0.71950 (17) 0.8159 (3) 0.0533 (6)
H5 0.8943 0.7437 0.9269 0.064*
C6 0.9135 (3) 0.63265 (16) 0.7939 (3) 0.0497 (5)
H6 0.9581 0.5984 0.8881 0.060*
C7 0.8815 (3) 0.59866 (14) 0.6286 (3) 0.0410 (4)
C8 0.8976 (3) 0.50848 (14) 0.5709 (2) 0.0402 (4)
C9 0.8329 (3) 0.42945 (12) 0.2879 (3) 0.0391 (4)
H9 0.9070 0.3854 0.3557 0.047*
C10 0.6282 (3) 0.39570 (14) 0.2619 (3) 0.0479 (5)
H10A 0.5655 0.4077 0.3661 0.057*
H10B 0.5601 0.4265 0.1656 0.057*
C11 0.6167 (3) 0.30101 (14) 0.2249 (3) 0.0437 (5)
C12 0.5649 (3) 0.26268 (17) 0.0691 (3) 0.0532 (6)
H12 0.5355 0.2917 −0.0357 0.064*
C13 0.6095 (3) 0.15405 (15) 0.2600 (3) 0.0488 (5)
C14 0.6192 (3) 0.07499 (16) 0.3441 (4) 0.0607 (7)
H14 0.5920 0.0241 0.2830 0.073*
C15 0.6705 (3) 0.07453 (17) 0.5213 (4) 0.0650 (7)
H15 0.6779 0.0224 0.5810 0.078*
C16 0.7115 (3) 0.15063 (19) 0.6124 (4) 0.0590 (6)
H16 0.7468 0.1482 0.7318 0.071*
C17 0.7012 (3) 0.22977 (16) 0.5303 (3) 0.0479 (5)
H17 0.7294 0.2801 0.5928 0.058*
C18 0.6472 (3) 0.23231 (14) 0.3505 (3) 0.0413 (4)
C19 0.9328 (3) 0.44380 (13) 0.1227 (3) 0.0433 (5)
N1 0.8488 (2) 0.50773 (11) 0.3922 (2) 0.0397 (4)
N2 0.5622 (3) 0.17470 (15) 0.0885 (3) 0.0591 (6)
N3 0.7496 (3) 0.79406 (12) 0.3599 (3) 0.0518 (5)
O1 0.7311 (2) 0.60263 (10) 0.18047 (19) 0.0526 (4)
O2 0.9409 (2) 0.44385 (10) 0.65541 (19) 0.0518 (4)
O3 1.0857 (3) 0.47711 (14) 0.1246 (2) 0.0659 (5)
O4 0.8377 (3) 0.41420 (14) −0.0186 (2) 0.0709 (6)
O5 0.8221 (3) 0.77922 (12) 0.2254 (2) 0.0683 (5)
O6 0.6475 (3) 0.85593 (12) 0.3807 (3) 0.0768 (6)
H1 0.913 (5) 0.425 (2) −0.120 (5) 0.093 (11)*
H2 0.525 (6) 0.138 (3) 0.008 (5) 0.095 (12)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0449 (10) 0.0354 (11) 0.0400 (11) 0.0023 (8) 0.0046 (8) 0.0025 (8)
C2 0.0382 (9) 0.0391 (11) 0.0391 (10) −0.0004 (8) 0.0080 (8) −0.0029 (8)
C3 0.0408 (10) 0.0409 (11) 0.0475 (11) −0.0011 (8) 0.0092 (8) −0.0035 (9)
C4 0.0440 (11) 0.0449 (12) 0.0576 (13) −0.0067 (9) 0.0161 (9) −0.0150 (10)
C5 0.0539 (12) 0.0625 (14) 0.0451 (12) −0.0119 (11) 0.0133 (10) −0.0138 (11)
C6 0.0527 (12) 0.0579 (15) 0.0397 (11) −0.0068 (10) 0.0100 (9) −0.0027 (10)
C7 0.0434 (10) 0.0442 (11) 0.0363 (10) −0.0038 (8) 0.0083 (8) −0.0055 (8)
C8 0.0414 (10) 0.0436 (11) 0.0362 (10) 0.0003 (8) 0.0078 (8) 0.0037 (9)
C9 0.0482 (10) 0.0314 (10) 0.0381 (10) 0.0020 (8) 0.0068 (8) 0.0011 (8)
C10 0.0477 (12) 0.0417 (12) 0.0549 (13) 0.0001 (9) 0.0085 (9) 0.0007 (10)
C11 0.0409 (10) 0.0400 (11) 0.0511 (12) −0.0037 (8) 0.0087 (9) −0.0006 (9)
C12 0.0575 (13) 0.0598 (15) 0.0422 (11) −0.0117 (11) 0.0034 (10) −0.0017 (10)
C13 0.0442 (11) 0.0413 (11) 0.0618 (14) −0.0044 (9) 0.0104 (10) −0.0042 (10)
C14 0.0490 (12) 0.0396 (12) 0.095 (2) −0.0061 (9) 0.0157 (13) −0.0023 (12)
C15 0.0497 (12) 0.0517 (15) 0.095 (2) 0.0012 (11) 0.0143 (13) 0.0218 (14)
C16 0.0486 (12) 0.0678 (16) 0.0610 (15) 0.0017 (11) 0.0068 (10) 0.0146 (12)
C17 0.0430 (10) 0.0505 (12) 0.0506 (12) 0.0002 (9) 0.0060 (9) 0.0034 (10)
C18 0.0371 (9) 0.0404 (11) 0.0474 (11) −0.0035 (8) 0.0088 (8) −0.0003 (9)
C19 0.0553 (12) 0.0359 (10) 0.0388 (10) −0.0026 (9) 0.0053 (9) −0.0012 (8)
N1 0.0527 (10) 0.0349 (9) 0.0315 (8) 0.0015 (7) 0.0053 (7) −0.0001 (7)
N2 0.0653 (13) 0.0558 (14) 0.0568 (13) −0.0161 (10) 0.0081 (10) −0.0152 (10)
N3 0.0536 (10) 0.0382 (10) 0.0639 (13) −0.0008 (8) 0.0069 (9) −0.0001 (8)
O1 0.0717 (10) 0.0440 (8) 0.0401 (8) 0.0082 (7) −0.0046 (7) −0.0003 (7)
O2 0.0694 (10) 0.0456 (9) 0.0406 (8) 0.0043 (7) 0.0057 (7) 0.0065 (7)
O3 0.0628 (11) 0.0857 (13) 0.0511 (9) −0.0194 (9) 0.0148 (8) −0.0044 (8)
O4 0.0945 (13) 0.0828 (13) 0.0363 (8) −0.0362 (11) 0.0113 (9) −0.0052 (8)
O5 0.1017 (14) 0.0533 (10) 0.0511 (10) 0.0083 (9) 0.0135 (9) 0.0002 (8)
O6 0.0812 (12) 0.0447 (10) 0.1084 (16) 0.0170 (9) 0.0289 (11) 0.0126 (10)

Geometric parameters (Å, °)

C1—O1 1.205 (3) C10—H10B 0.9700
C1—N1 1.403 (3) C11—C12 1.358 (3)
C1—C2 1.493 (3) C11—C18 1.442 (3)
C2—C3 1.384 (3) C12—N2 1.375 (3)
C2—C7 1.392 (3) C12—H12 0.9300
C3—C4 1.391 (3) C13—N2 1.369 (3)
C3—N3 1.463 (3) C13—C14 1.386 (4)
C4—C5 1.382 (4) C13—C18 1.413 (3)
C4—H4 0.9300 C14—C15 1.377 (4)
C5—C6 1.386 (4) C14—H14 0.9300
C5—H5 0.9300 C15—C16 1.391 (4)
C6—C7 1.376 (3) C15—H15 0.9300
C6—H6 0.9300 C16—C17 1.381 (4)
C7—C8 1.477 (3) C16—H16 0.9300
C8—O2 1.219 (2) C17—C18 1.401 (3)
C8—N1 1.386 (3) C17—H17 0.9300
C9—N1 1.455 (2) C19—O3 1.195 (3)
C9—C19 1.527 (3) C19—O4 1.306 (3)
C9—C10 1.532 (3) N2—H2 0.86 (4)
C9—H9 0.9800 N3—O5 1.219 (3)
C10—C11 1.499 (3) N3—O6 1.221 (3)
C10—H10A 0.9700 O4—H1 1.00 (4)
O1—C1—N1 122.92 (18) C12—C11—C10 127.1 (2)
O1—C1—C2 131.44 (18) C18—C11—C10 126.7 (2)
N1—C1—C2 105.61 (16) C11—C12—N2 110.2 (2)
C3—C2—C7 118.11 (19) C11—C12—H12 124.9
C3—C2—C1 133.98 (19) N2—C12—H12 124.9
C7—C2—C1 107.76 (18) N2—C13—C14 130.9 (2)
C2—C3—C4 120.1 (2) N2—C13—C18 106.9 (2)
C2—C3—N3 121.67 (19) C14—C13—C18 122.2 (2)
C4—C3—N3 118.2 (2) C15—C14—C13 117.6 (2)
C5—C4—C3 120.2 (2) C15—C14—H14 121.2
C5—C4—H4 119.9 C13—C14—H14 121.2
C3—C4—H4 119.9 C14—C15—C16 121.2 (2)
C4—C5—C6 120.6 (2) C14—C15—H15 119.4
C4—C5—H5 119.7 C16—C15—H15 119.4
C6—C5—H5 119.7 C17—C16—C15 121.8 (2)
C7—C6—C5 118.1 (2) C17—C16—H16 119.1
C7—C6—H6 121.0 C15—C16—H16 119.1
C5—C6—H6 121.0 C16—C17—C18 118.3 (2)
C6—C7—C2 122.7 (2) C16—C17—H17 120.8
C6—C7—C8 129.2 (2) C18—C17—H17 120.8
C2—C7—C8 108.11 (17) C17—C18—C13 118.9 (2)
O2—C8—N1 123.29 (19) C17—C18—C11 133.8 (2)
O2—C8—C7 129.99 (18) C13—C18—C11 107.29 (19)
N1—C8—C7 106.71 (17) O3—C19—O4 123.7 (2)
N1—C9—C19 108.63 (16) O3—C19—C9 122.70 (19)
N1—C9—C10 112.37 (17) O4—C19—C9 113.59 (18)
C19—C9—C10 116.40 (17) C8—N1—C1 111.65 (16)
N1—C9—H9 106.3 C8—N1—C9 123.58 (16)
C19—C9—H9 106.3 C1—N1—C9 124.30 (16)
C10—C9—H9 106.3 C13—N2—C12 109.5 (2)
C11—C10—C9 113.22 (18) C13—N2—H2 125 (3)
C11—C10—H10A 108.9 C12—N2—H2 125 (3)
C9—C10—H10A 108.9 O5—N3—O6 124.1 (2)
C11—C10—H10B 108.9 O5—N3—C3 117.55 (18)
C9—C10—H10B 108.9 O6—N3—C3 118.3 (2)
H10A—C10—H10B 107.7 C19—O4—H1 109 (2)
C12—C11—C18 106.1 (2)
O1—C1—C2—C3 −1.5 (4) C16—C17—C18—C13 −1.3 (3)
N1—C1—C2—C3 −179.2 (2) C16—C17—C18—C11 178.1 (2)
O1—C1—C2—C7 173.8 (2) N2—C13—C18—C17 −179.45 (18)
N1—C1—C2—C7 −3.9 (2) C14—C13—C18—C17 1.8 (3)
C7—C2—C3—C4 −2.8 (3) N2—C13—C18—C11 1.0 (2)
C1—C2—C3—C4 172.1 (2) C14—C13—C18—C11 −177.7 (2)
C7—C2—C3—N3 174.80 (18) C12—C11—C18—C17 −179.8 (2)
C1—C2—C3—N3 −10.3 (3) C10—C11—C18—C17 −3.3 (4)
C2—C3—C4—C5 4.2 (3) C12—C11—C18—C13 −0.4 (2)
N3—C3—C4—C5 −173.46 (19) C10—C11—C18—C13 176.2 (2)
C3—C4—C5—C6 −1.9 (3) N1—C9—C19—O3 45.1 (3)
C4—C5—C6—C7 −1.7 (3) C10—C9—C19—O3 173.1 (2)
C5—C6—C7—C2 3.2 (3) N1—C9—C19—O4 −136.7 (2)
C5—C6—C7—C8 −176.1 (2) C10—C9—C19—O4 −8.7 (3)
C3—C2—C7—C6 −0.9 (3) O2—C8—N1—C1 176.27 (19)
C1—C2—C7—C6 −177.10 (18) C7—C8—N1—C1 −2.7 (2)
C3—C2—C7—C8 178.52 (17) O2—C8—N1—C9 3.8 (3)
C1—C2—C7—C8 2.4 (2) C7—C8—N1—C9 −175.13 (18)
C6—C7—C8—O2 0.6 (4) O1—C1—N1—C8 −173.90 (19)
C2—C7—C8—O2 −178.8 (2) C2—C1—N1—C8 4.1 (2)
C6—C7—C8—N1 179.5 (2) O1—C1—N1—C9 −1.5 (3)
C2—C7—C8—N1 0.1 (2) C2—C1—N1—C9 176.45 (17)
N1—C9—C10—C11 −155.69 (18) C19—C9—N1—C8 −134.89 (18)
C19—C9—C10—C11 78.1 (2) C10—C9—N1—C8 94.9 (2)
C9—C10—C11—C12 −105.8 (3) C19—C9—N1—C1 53.6 (2)
C9—C10—C11—C18 78.3 (3) C10—C9—N1—C1 −76.7 (2)
C18—C11—C12—N2 −0.4 (3) C14—C13—N2—C12 177.3 (2)
C10—C11—C12—N2 −176.9 (2) C18—C13—N2—C12 −1.3 (3)
N2—C13—C14—C15 −179.5 (2) C11—C12—N2—C13 1.1 (3)
C18—C13—C14—C15 −1.1 (3) C2—C3—N3—O5 −34.6 (3)
C13—C14—C15—C16 −0.1 (4) C4—C3—N3—O5 143.1 (2)
C14—C15—C16—C17 0.5 (4) C2—C3—N3—O6 147.9 (2)
C15—C16—C17—C18 0.2 (3) C4—C3—N3—O6 −34.5 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2···O1i 0.86 (4) 2.28 (4) 3.002 (3) 142 (4)
O4—H1···O2ii 1.00 (4) 1.78 (4) 2.716 (2) 154 (3)

Symmetry codes: (i) −x+1, y−1/2, −z; (ii) x, y, z−1.

Table 2 π–π stacking interactions between six-membered rings from indole (C13—C18; ring centroid Cg(1)) and nitrophthalimide (C2—C7; ring centroid Cg(2)).

Cg-Cg : distance (Å) between ring centroids; α : dihedral angle(°) between ring planes 1 and 2 ; β : angle (°) between Cg(1)-->Cg(2) vector and normal to ring plane 1 ; γ : angle (°) between Cg(1)-->Cg(2) vector and normal to ring plane 2 ; Cg1_Perp : perpendicular distance (Å) of Cg(1) on ring plane 2 ; Cg2_Perp : perpendicular distance (Å) of Cg(2) on ring plane 1.

Cg(I)-Cg(J) sym (J) Cg-Cg α β γ Cg1_Perp Cg2_Perp
Cg(1)-Cg(2) (i) 3.638 (1) 7.24 18.69 20.72 -3.403 (1) 3.446 (1)
Cg(1)-Cg(2) (ii) 3.610 (1) 7.24 19.41 12.26 3.528 (1) 3.405 (1)

Symmetry codes : (i) 1 - x, 1/2 + y, 1 - z, (ii) 2 - x, 1/2 + y, 1 - z

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: VM2109).

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
  2. Braun, J., Boittiaux, I., Tilborg, A., Lambert, D. & Wouters, J. (2010). Acta Cryst. E66, o3175–o3176. [DOI] [PMC free article] [PubMed]
  3. Brueckner, B., Boy, R. G., Siedlecki, P., Munsch, T., Kliem, H. C., Zielenkiewicz, P., Suhai, S., Wiessler, M. & Lyko, F. (2005). Cancer Res. 65, 6305–6311. [DOI] [PubMed]
  4. Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  5. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  6. Oxford Diffraction (2009). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, England.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811029138/vm2109sup1.cif

e-67-o2116-sup1.cif (21KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811029138/vm2109Isup2.hkl

e-67-o2116-Isup2.hkl (142.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811029138/vm2109Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES