Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jul 23;67(Pt 8):o2129. doi: 10.1107/S160053681102808X

3-Ethyl-4-methyl-1H-pyrazol-2-ium-5-olate

R S Rathore a,*, T Narasimhamurthy b, R Venkat Ragavan c, V Vijayakumar c, S Sarveswari c
PMCID: PMC3213569  PMID: 22091146

Abstract

The title compound, C6H10N2O, is a zwitterionic pyrazole derivative. The crystal packing is predominantly governed by a three-center iminium–amine N+—H⋯O⋯H—N inter­action, leading to an undulating sheet-like structure lying parallel to (100).

Related literature

For related structures and the preparation of similar compounds, see: Ragavan et al. (2009, 2010) and references therein. For related salt-bridge-mediated sheet structures, see: Shylaja et al. (2008).graphic file with name e-67-o2129-scheme1.jpg

Experimental

Crystal data

  • C6H10N2O

  • M r = 126.16

  • Monoclinic, Inline graphic

  • a = 9.1299 (15) Å

  • b = 7.1600 (11) Å

  • c = 11.374 (2) Å

  • β = 113.232 (9)°

  • V = 683.2 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.21 × 0.19 × 0.11 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001) T min = 0.64, T max = 0.83

  • 12120 measured reflections

  • 1332 independent reflections

  • 961 reflections with I > 2σ(I)

  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049

  • wR(F 2) = 0.136

  • S = 1.03

  • 1332 reflections

  • 92 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681102808X/su2287sup1.cif

e-67-o2129-sup1.cif (14.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681102808X/su2287Isup2.hkl

e-67-o2129-Isup2.hkl (64.5KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681102808X/su2287Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O5i 0.91 (2) 1.82 (2) 2.730 (2) 175 (2)
N2—H2⋯O5ii 0.96 (2) 1.75 (2) 2.693 (2) 168 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

We acknowledge the CCD facility, set up under the IRHPA–DST program at the IISc, Bangalore. VV thanks the DST for financial assistance under the Fast-Track young scientist scheme, and RSR acknowledges the CSIR for funding under the scientist’s pool scheme.

supplementary crystallographic information

Comment

As a part of our interest in antimicrobial compounds, we have synthesized the title pyrazole derivative using the procedure described earlier by (Ragavan et al., 2009, and references therein; 2010, and references therein).

The molecular structure of the title molecule is shown in Fig 1. The methyl atom (C3B) of the 3-ethyl substituent lies out of the mean plane of the pyrazole moiety (N1,N2,C3-C5) by 1.366 (4) Å.

The crystal packing is a fine balance of strong N—H···O hydrogen bonds (Table 1) and salt bridges, which normally tend to promote the formation of a planar structure and compact packing (Shylaja et al., 2008). In the title compound all the hydrogen bonding donors, iminium N+H (N1) and amine NH (N2), and the O-(O1) acceptor, are in the plane of the pyrazole moiety, which would normally yield a planar hydrogen-bonded structure. However, in order to accommodate the out-of-plane methyl group, (C3B), an undulating hydrogen bonded sheet-like structure, lieing paralallel to (100), is formed (Fig. 2).

Experimental

The title compound was synthesized using the method described earlier by (Ragavan et al., 2009, 2010). It was crystallized using an ethanol-chloroform (1:1) mixture. Yield, 74%; m.p. 779-780 K.

Refinement

The NH atoms were located in a difference Fourier map and were freely refined: N2—H2 = 0.92 (2) Å and N1+—H1 = 0.95 (3) Å. The methylene and methyl hydrogen atoms were placed in calculated positions and refined as riding atoms: C-H = 0.97 and 0.96 Å, for CH and CH3 H-atoms, respectively, with Uiso(H) = k × Ueq(C,) where k = 1.5 for CH3 H-atoms and 1.2 for the CH H-atoms.

Figures

Fig. 1.

Fig. 1.

A view of the molecular structure of the title molecule, with labelling scheme and displacement ellipsoids drawn at the 30% probability level.

Fig. 2.

Fig. 2.

A view of the N—H···O hydrogen bonded (dashed cyan lines) sheet structure in the crystal structure of the title compound (see Table 1 for details).

Crystal data

C6H10N2O F(000) = 272
Mr = 126.16 Dx = 1.227 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 3015 reflections
a = 9.1299 (15) Å θ = 2.4–22.9°
b = 7.1600 (11) Å µ = 0.09 mm1
c = 11.374 (2) Å T = 296 K
β = 113.232 (9)° Plate, colourless
V = 683.2 (2) Å3 0.21 × 0.19 × 0.11 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer 1332 independent reflections
Radiation source: fine-focus sealed tube 961 reflections with I > 2σ(I)
graphite Rint = 0.034
φ and ω scans θmax = 26.0°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Bruker, 2001) h = −11→11
Tmin = 0.64, Tmax = 0.83 k = −8→8
12120 measured reflections l = −13→13

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0674P)2 + 0.2195P] where P = (Fo2 + 2Fc2)/3
1332 reflections (Δ/σ)max < 0.001
92 parameters Δρmax = 0.17 e Å3
0 restraints Δρmin = −0.21 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.0756 (2) 0.1929 (2) 0.58699 (14) 0.0427 (5)
H1 0.029 (3) 0.087 (3) 0.601 (2) 0.051 (6)*
N2 0.1373 (2) 0.3275 (2) 0.67795 (15) 0.0462 (5)
H2 0.116 (3) 0.326 (3) 0.754 (2) 0.062 (6)*
O5 0.07244 (17) 0.12652 (19) 0.38750 (11) 0.0489 (4)
C3 0.2107 (2) 0.4552 (3) 0.63369 (17) 0.0402 (5)
C3A 0.2903 (3) 0.6189 (3) 0.7141 (2) 0.0573 (6)
H3A1 0.2994 0.7177 0.6591 0.069*
H3A2 0.2238 0.6648 0.7566 0.069*
C3B 0.4512 (4) 0.5766 (4) 0.8123 (3) 0.1014 (12)
H3B1 0.4424 0.4859 0.8714 0.152*
H3B2 0.4982 0.6889 0.8577 0.152*
H3B3 0.5171 0.5277 0.7714 0.152*
C4 0.1999 (2) 0.4015 (2) 0.51474 (17) 0.0367 (5)
C4A 0.2643 (3) 0.4995 (3) 0.4291 (2) 0.0544 (6)
H41 0.3131 0.6149 0.4681 0.082*
H42 0.1789 0.5248 0.3482 0.082*
H43 0.3422 0.4216 0.4162 0.082*
C5 0.1135 (2) 0.2330 (3) 0.48611 (16) 0.0359 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0661 (11) 0.0389 (9) 0.0308 (8) −0.0145 (8) 0.0275 (8) −0.0061 (7)
N2 0.0698 (12) 0.0444 (10) 0.0313 (9) −0.0109 (8) 0.0275 (8) −0.0098 (7)
O5 0.0759 (10) 0.0484 (8) 0.0304 (7) −0.0197 (7) 0.0295 (7) −0.0092 (6)
C3 0.0470 (11) 0.0362 (10) 0.0369 (10) −0.0008 (8) 0.0162 (9) −0.0008 (8)
C3A 0.0725 (15) 0.0467 (12) 0.0519 (13) −0.0103 (11) 0.0237 (12) −0.0149 (10)
C3B 0.084 (2) 0.082 (2) 0.097 (2) −0.0121 (16) −0.0077 (17) −0.0341 (18)
C4 0.0428 (10) 0.0361 (10) 0.0322 (9) −0.0018 (8) 0.0159 (8) 0.0016 (8)
C4A 0.0632 (14) 0.0566 (13) 0.0485 (12) −0.0143 (11) 0.0274 (11) 0.0035 (10)
C5 0.0455 (10) 0.0378 (10) 0.0266 (9) −0.0018 (8) 0.0165 (8) 0.0003 (8)

Geometric parameters (Å, °)

N1—C5 1.354 (2) C3A—H3A2 0.9700
N1—N2 1.363 (2) C3B—H3B1 0.9600
N1—H1 0.92 (2) C3B—H3B2 0.9600
N2—C3 1.343 (3) C3B—H3B3 0.9600
N2—H2 0.95 (3) C4—C5 1.408 (3)
O5—C5 1.284 (2) C4—C4A 1.495 (3)
C3—C4 1.372 (3) C4A—H41 0.9600
C3—C3A 1.488 (3) C4A—H42 0.9600
C3A—C3B 1.484 (4) C4A—H43 0.9600
C3A—H3A1 0.9700
C5—N1—N2 109.01 (16) H3B1—C3B—H3B2 109.5
C5—N1—H1 128.2 (13) C3A—C3B—H3B3 109.5
N2—N1—H1 122.3 (13) H3B1—C3B—H3B3 109.5
C3—N2—N1 108.38 (16) H3B2—C3B—H3B3 109.5
C3—N2—H2 130.8 (14) C3—C4—C5 106.50 (16)
N1—N2—H2 120.5 (14) C3—C4—C4A 128.08 (17)
N2—C3—C4 109.04 (16) C5—C4—C4A 125.42 (17)
N2—C3—C3A 120.03 (18) C4—C4A—H41 109.5
C4—C3—C3A 130.90 (18) C4—C4A—H42 109.5
C3B—C3A—C3 113.6 (2) H41—C4A—H42 109.5
C3B—C3A—H3A1 108.8 C4—C4A—H43 109.5
C3—C3A—H3A1 108.8 H41—C4A—H43 109.5
C3B—C3A—H3A2 108.8 H42—C4A—H43 109.5
C3—C3A—H3A2 108.8 O5—C5—N1 122.03 (16)
H3A1—C3A—H3A2 107.7 O5—C5—C4 130.92 (17)
C3A—C3B—H3B1 109.5 N1—C5—C4 107.05 (15)
C3A—C3B—H3B2 109.5
C5—N1—N2—C3 1.6 (2) C3A—C3—C4—C4A −1.7 (3)
N1—N2—C3—C4 −1.4 (2) N2—N1—C5—O5 178.68 (17)
N1—N2—C3—C3A −179.69 (17) N2—N1—C5—C4 −1.2 (2)
N2—C3—C3A—C3B 80.6 (3) C3—C4—C5—O5 −179.5 (2)
C4—C3—C3A—C3B −97.3 (3) C4A—C4—C5—O5 0.9 (3)
N2—C3—C4—C5 0.7 (2) C3—C4—C5—N1 0.3 (2)
C3A—C3—C4—C5 178.7 (2) C4A—C4—C5—N1 −179.25 (18)
N2—C3—C4—C4A −179.80 (19)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···O5i 0.91 (2) 1.82 (2) 2.730 (2) 175 (2)
N2—H2···O5ii 0.96 (2) 1.75 (2) 2.693 (2) 168 (2)

Symmetry codes: (i) −x, −y, −z+1; (ii) x, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2287).

References

  1. Bruker (2001). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Bruker (2007). APEX2 and SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  4. Ragavan, R. V., Vijayakumar, V. & Kumari, N. S. (2009). Eur. J. Med. Chem. 44, 3852–3857.
  5. Ragavan, R. V., Vijayakumar, V. & Kumari, N. S. (2010). Eur. J. Med. Chem. 45, 1173–1180. [DOI] [PubMed]
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Shylaja, S., Mahendra, K. N., Varma, K. B. R., Narasimhamurthy, T. & Rathore, R. S. (2008). Acta Cryst. C64, o361–o363. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148-155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681102808X/su2287sup1.cif

e-67-o2129-sup1.cif (14.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681102808X/su2287Isup2.hkl

e-67-o2129-Isup2.hkl (64.5KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681102808X/su2287Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES