Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jul 23;67(Pt 8):o2134. doi: 10.1107/S1600536811028716

2-[4-(4-Methylphenylsulfonyl)piperazin-1-yl]-1-(4,5,6,7-tetrahydrothieno[3,2-c]pyridin-5-yl)ethanone

Duan Niu a, Shu-Yun Huang b, Ping-Bao Wang b, Deng-Ke Liu b,*
PMCID: PMC3213574  PMID: 22091151

Abstract

In the title thienopyridine derivative, C20H25N3O3S2, the piperazine ring exhibits a chair conformation and the tetra­hydro­pyridine ring exhibits a half-chair conformation. The folded conformation of the mol­ecule is defined by the N—C—C—N torsion angle of −70.20 (2) °. Inter­molecular C—H⋯S and C—H⋯O hydrogen bonds help to establish the packing.

Related literature

For background to the bioactivity and applications of the title compound, see: Cattaneo (2009); Wallentin (2009). For a related structure, see: Zhi et al. (2011). For the synthesis of the title compound, see: Liu et al. (2008).graphic file with name e-67-o2134-scheme1.jpg

Experimental

Crystal data

  • C20H25N3O3S2

  • M r = 419.55

  • Orthorhombic, Inline graphic

  • a = 13.062 (2) Å

  • b = 15.710 (3) Å

  • c = 19.798 (3) Å

  • V = 4062.8 (11) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 113 K

  • 0.24 × 0.20 × 0.18 mm

Data collection

  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005) T min = 0.934, T max = 0.950

  • 49454 measured reflections

  • 4844 independent reflections

  • 4463 reflections with I > 2σ(I)

  • R int = 0.054

Refinement

  • R[F 2 > 2σ(F 2)] = 0.054

  • wR(F 2) = 0.143

  • S = 1.14

  • 4844 reflections

  • 254 parameters

  • H-atom parameters constrained

  • Δρmax = 1.17 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2005).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811028716/fl2350sup1.cif

e-67-o2134-sup1.cif (22.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811028716/fl2350Isup2.hkl

e-67-o2134-Isup2.hkl (237.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811028716/fl2350Isup3.cdx

Supplementary material file. DOI: 10.1107/S1600536811028716/fl2350Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5A⋯S1i 0.99 2.77 3.469 (2) 128
C6—H6A⋯O1ii 0.99 2.52 3.470 (3) 161
C6—H6B⋯O2iii 0.99 2.51 3.346 (3) 143

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors thank Mr Hai-Bin Song of Nankai University for the X-ray crystallographic determinations and helpful suggestions.

supplementary crystallographic information

Comment

As a thienopyridine derivative, the title compound(I) can be used as an irreversible P2Y12 antagonist to inhibit ADP, which induces platelet aggregation and decreases the risk of arterial occlusion. (Cattaneo 2009; Wallentin 2009).

The piperazine ring exhibits a chair conformation and the tetrahydropyridine ring exhibits a half chair conformation (Fig. 1). The folded conformation of the molecule is defined by the N1—C8—C9—N2 torsion angle of -70.20 (2) °. The dihedral angles formed between the tetrahydropyridine plane and the phenyl ring and the C10—C11—C12—C13 plane are 85.47 (6) ° and 56.38 (9) °, respectively. The crystal is stabilized by intermolecular C—H···S and C—H···O hydrogen bonds (Table1, Fig.2).

Experimental

2-Chloroacetyl chloride was added dropwise into a mixture of 4,5,6,7-tetrahydrothieno[3,2-c]pyridine, dichloromethane and TEA at 263k-273k. After stirring for 3 h, the solvent was evaporated and a light yellow oily substance was obtained by silica gel column chromatography. The light yellow oily substance was then dissloved in a mixture of acetonitrile, TEA and 1-tosylpiperazine. After stirring for 5 h, the title compound was obtained by silica gel column chromatography. Crystallization of the resultingg white solid from methanol afforded white crystals suitble for X-ray analysis.

Refinement

The H atoms were positioned geometrioncally and refined using a riding model with d(C—H)=0.95–0.99 Å, and Uiso(H)=1.2Ueq(CH and CH2) or 1.5Ueq(CH3) of the parent atom.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), with the atom-numbering scheme and 50% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

Packing diagram for (I) with hydrogen bonds drawn as dashed lines.

Crystal data

C20H25N3O3S2 F(000) = 1776
Mr = 419.55 Dx = 1.372 Mg m3
Orthorhombic, Pbca Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 12748 reflections
a = 13.062 (2) Å θ = 1.7–28.0°
b = 15.710 (3) Å µ = 0.29 mm1
c = 19.798 (3) Å T = 113 K
V = 4062.8 (11) Å3 Prism, colorless
Z = 8 0.24 × 0.20 × 0.18 mm

Data collection

Rigaku Saturn CCD area-detector diffractometer 4844 independent reflections
Radiation source: rotating anode 4463 reflections with I > 2σ(I)
multilayer Rint = 0.054
Detector resolution: 14.63 pixels mm-1 θmax = 27.9°, θmin = 2.1°
ω and φ scans h = −17→17
Absorption correction: multi-scan CrystalClear k = −20→20
Tmin = 0.934, Tmax = 0.950 l = −26→25
49454 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143 H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0665P)2 + 2.3859P] where P = (Fo2 + 2Fc2)/3
4844 reflections (Δ/σ)max = 0.002
254 parameters Δρmax = 1.17 e Å3
0 restraints Δρmin = −0.34 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 −0.12585 (4) 0.69571 (4) 0.50761 (3) 0.03055 (16)
S2 0.51658 (4) 1.09372 (3) 0.30610 (3) 0.03065 (16)
O1 0.13122 (12) 1.01184 (10) 0.57588 (8) 0.0348 (4)
O2 0.58272 (13) 1.14367 (10) 0.34791 (9) 0.0400 (4)
O3 0.48630 (14) 1.12484 (11) 0.24122 (9) 0.0420 (4)
N1 0.12333 (13) 0.89002 (11) 0.51535 (9) 0.0273 (4)
N2 0.23688 (12) 1.01546 (10) 0.41984 (8) 0.0244 (4)
N3 0.41057 (13) 1.07905 (11) 0.34905 (9) 0.0271 (4)
C1 −0.11495 (17) 0.69019 (14) 0.59285 (13) 0.0329 (5)
H1 −0.1601 0.6579 0.6204 0.039*
C2 −0.03617 (16) 0.73600 (13) 0.61798 (11) 0.0293 (4)
H2 −0.0186 0.7390 0.6645 0.035*
C3 0.01696 (15) 0.77916 (12) 0.56530 (10) 0.0240 (4)
C4 0.10712 (17) 0.83828 (14) 0.57598 (11) 0.0306 (5)
H4A 0.0937 0.8758 0.6152 0.037*
H4B 0.1694 0.8045 0.5857 0.037*
C5 0.11965 (16) 0.84157 (14) 0.45193 (11) 0.0278 (4)
H5A 0.1705 0.7949 0.4538 0.033*
H5B 0.1384 0.8795 0.4139 0.033*
C6 0.01385 (16) 0.80409 (14) 0.43904 (10) 0.0277 (4)
H6A −0.0342 0.8495 0.4249 0.033*
H6B 0.0174 0.7610 0.4026 0.033*
C7 −0.02224 (15) 0.76393 (13) 0.50316 (11) 0.0252 (4)
C8 0.13226 (14) 0.97516 (13) 0.52092 (11) 0.0266 (4)
C9 0.13997 (15) 1.02709 (14) 0.45566 (12) 0.0302 (5)
H9A 0.0831 1.0106 0.4253 0.036*
H9B 0.1316 1.0882 0.4667 0.036*
C10 0.32177 (15) 1.05628 (13) 0.45626 (11) 0.0260 (4)
H10A 0.3281 1.0309 0.5018 0.031*
H10B 0.3072 1.1177 0.4617 0.031*
C11 0.42175 (15) 1.04500 (14) 0.41822 (10) 0.0264 (4)
H11A 0.4774 1.0755 0.4420 0.032*
H11B 0.4399 0.9839 0.4163 0.032*
C12 0.32501 (17) 1.03841 (14) 0.31276 (11) 0.0306 (5)
H12A 0.3378 0.9766 0.3081 0.037*
H12B 0.3183 1.0632 0.2670 0.037*
C13 0.22808 (17) 1.05332 (15) 0.35261 (11) 0.0321 (5)
H13A 0.2155 1.1152 0.3568 0.039*
H13B 0.1693 1.0278 0.3285 0.039*
C14 0.57571 (17) 0.99377 (13) 0.29458 (10) 0.0273 (4)
C15 0.66141 (17) 0.97308 (14) 0.33228 (11) 0.0305 (5)
H15 0.6860 1.0112 0.3658 0.037*
C16 0.71122 (18) 0.89631 (15) 0.32094 (12) 0.0344 (5)
H16 0.7705 0.8825 0.3465 0.041*
C17 0.67544 (18) 0.83934 (14) 0.27257 (11) 0.0335 (5)
C18 0.58779 (19) 0.86056 (14) 0.23633 (11) 0.0334 (5)
H18 0.5617 0.8215 0.2040 0.040*
C19 0.53773 (18) 0.93727 (14) 0.24632 (11) 0.0304 (5)
H19 0.4785 0.9512 0.2207 0.037*
C20 0.7307 (2) 0.75663 (16) 0.25933 (14) 0.0474 (6)
H20A 0.7981 0.7581 0.2810 0.071*
H20B 0.7392 0.7488 0.2105 0.071*
H20C 0.6907 0.7093 0.2778 0.071*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0261 (3) 0.0310 (3) 0.0345 (3) −0.0073 (2) 0.0029 (2) −0.0032 (2)
S2 0.0320 (3) 0.0252 (3) 0.0348 (3) −0.0070 (2) 0.0075 (2) −0.0003 (2)
O1 0.0353 (9) 0.0313 (8) 0.0377 (9) −0.0053 (7) −0.0024 (7) −0.0032 (7)
O2 0.0348 (9) 0.0328 (8) 0.0523 (10) −0.0150 (7) 0.0129 (7) −0.0125 (7)
O3 0.0482 (10) 0.0385 (9) 0.0391 (9) −0.0008 (8) 0.0106 (8) 0.0138 (8)
N1 0.0287 (9) 0.0259 (9) 0.0274 (9) −0.0068 (7) 0.0013 (7) 0.0031 (7)
N2 0.0197 (8) 0.0239 (8) 0.0295 (9) −0.0049 (6) −0.0029 (6) 0.0043 (7)
N3 0.0251 (9) 0.0267 (9) 0.0296 (9) −0.0061 (7) 0.0007 (7) 0.0000 (7)
C1 0.0266 (11) 0.0255 (10) 0.0466 (13) 0.0001 (8) 0.0003 (9) −0.0044 (9)
C2 0.0326 (11) 0.0271 (10) 0.0281 (11) 0.0028 (9) 0.0004 (8) 0.0047 (8)
C3 0.0261 (10) 0.0202 (9) 0.0258 (10) 0.0021 (7) 0.0017 (8) 0.0020 (7)
C4 0.0348 (11) 0.0304 (11) 0.0266 (11) −0.0048 (9) −0.0019 (8) 0.0035 (9)
C5 0.0266 (10) 0.0281 (10) 0.0287 (11) −0.0057 (8) 0.0007 (8) 0.0012 (8)
C6 0.0290 (10) 0.0304 (11) 0.0238 (10) −0.0041 (8) 0.0012 (8) −0.0015 (8)
C7 0.0246 (10) 0.0219 (9) 0.0290 (10) 0.0001 (8) 0.0009 (8) −0.0023 (8)
C8 0.0159 (9) 0.0266 (10) 0.0372 (12) −0.0027 (7) −0.0010 (8) 0.0012 (9)
C9 0.0197 (9) 0.0280 (10) 0.0428 (13) −0.0018 (8) −0.0005 (8) 0.0067 (9)
C10 0.0225 (9) 0.0252 (9) 0.0302 (10) −0.0060 (8) −0.0009 (8) −0.0014 (8)
C11 0.0219 (9) 0.0288 (10) 0.0286 (10) −0.0053 (8) −0.0025 (8) −0.0017 (8)
C12 0.0328 (11) 0.0309 (11) 0.0282 (11) −0.0097 (9) −0.0051 (8) 0.0040 (8)
C13 0.0269 (10) 0.0340 (11) 0.0356 (12) −0.0071 (9) −0.0075 (9) 0.0110 (9)
C14 0.0315 (11) 0.0273 (10) 0.0231 (10) −0.0076 (8) 0.0059 (8) −0.0021 (8)
C15 0.0307 (11) 0.0356 (11) 0.0251 (10) −0.0085 (9) 0.0022 (8) −0.0038 (9)
C16 0.0311 (11) 0.0380 (12) 0.0342 (12) −0.0022 (9) 0.0022 (9) 0.0020 (9)
C17 0.0385 (12) 0.0306 (11) 0.0316 (11) −0.0045 (9) 0.0118 (9) 0.0007 (9)
C18 0.0467 (13) 0.0304 (11) 0.0230 (10) −0.0113 (10) 0.0065 (9) −0.0045 (8)
C19 0.0355 (11) 0.0332 (11) 0.0225 (10) −0.0075 (9) −0.0003 (8) 0.0002 (8)
C20 0.0517 (16) 0.0343 (12) 0.0561 (16) 0.0025 (11) 0.0162 (13) −0.0035 (12)

Geometric parameters (Å, °)

S1—C1 1.696 (3) C6—H6B 0.9900
S1—C7 1.729 (2) C8—C9 1.531 (3)
S2—O3 1.4302 (18) C9—H9A 0.9900
S2—O2 1.4309 (17) C9—H9B 0.9900
S2—N3 1.6412 (18) C10—C11 1.518 (3)
S2—C14 1.765 (2) C10—H10A 0.9900
O1—C8 1.231 (3) C10—H10B 0.9900
N1—C8 1.347 (3) C11—H11A 0.9900
N1—C4 1.465 (3) C11—H11B 0.9900
N1—C5 1.469 (3) C12—C13 1.510 (3)
N2—C9 1.462 (3) C12—H12A 0.9900
N2—C13 1.463 (3) C12—H12B 0.9900
N2—C10 1.470 (2) C13—H13A 0.9900
N3—C12 1.474 (3) C13—H13B 0.9900
N3—C11 1.478 (3) C14—C15 1.384 (3)
C1—C2 1.351 (3) C14—C19 1.395 (3)
C1—H1 0.9500 C15—C16 1.389 (3)
C2—C3 1.424 (3) C15—H15 0.9500
C2—H2 0.9500 C16—C17 1.392 (3)
C3—C7 1.354 (3) C16—H16 0.9500
C3—C4 1.515 (3) C17—C18 1.392 (3)
C4—H4A 0.9900 C17—C20 1.510 (3)
C4—H4B 0.9900 C18—C19 1.385 (3)
C5—C6 1.524 (3) C18—H18 0.9500
C5—H5A 0.9900 C19—H19 0.9500
C5—H5B 0.9900 C20—H20A 0.9800
C6—C7 1.494 (3) C20—H20B 0.9800
C6—H6A 0.9900 C20—H20C 0.9800
C1—S1—C7 90.96 (11) N2—C9—H9B 108.9
O3—S2—O2 119.94 (11) C8—C9—H9B 108.9
O3—S2—N3 106.26 (10) H9A—C9—H9B 107.7
O2—S2—N3 106.67 (9) N2—C10—C11 110.78 (16)
O3—S2—C14 108.00 (10) N2—C10—H10A 109.5
O2—S2—C14 107.37 (11) C11—C10—H10A 109.5
N3—S2—C14 108.14 (9) N2—C10—H10B 109.5
C8—N1—C4 119.75 (18) C11—C10—H10B 109.5
C8—N1—C5 125.96 (18) H10A—C10—H10B 108.1
C4—N1—C5 114.08 (17) N3—C11—C10 109.42 (17)
C9—N2—C13 108.82 (16) N3—C11—H11A 109.8
C9—N2—C10 111.13 (16) C10—C11—H11A 109.8
C13—N2—C10 109.16 (15) N3—C11—H11B 109.8
C12—N3—C11 111.71 (16) C10—C11—H11B 109.8
C12—N3—S2 116.61 (14) H11A—C11—H11B 108.2
C11—N3—S2 116.59 (14) N3—C12—C13 108.29 (18)
C2—C1—S1 113.78 (18) N3—C12—H12A 110.0
C2—C1—H1 123.1 C13—C12—H12A 110.0
S1—C1—H1 123.1 N3—C12—H12B 110.0
C1—C2—C3 110.8 (2) C13—C12—H12B 110.0
C1—C2—H2 124.6 H12A—C12—H12B 108.4
C3—C2—H2 124.6 N2—C13—C12 110.27 (17)
C7—C3—C2 113.39 (19) N2—C13—H13A 109.6
C7—C3—C4 121.96 (18) C12—C13—H13A 109.6
C2—C3—C4 124.64 (18) N2—C13—H13B 109.6
N1—C4—C3 109.76 (17) C12—C13—H13B 109.6
N1—C4—H4A 109.7 H13A—C13—H13B 108.1
C3—C4—H4A 109.7 C15—C14—C19 120.5 (2)
N1—C4—H4B 109.7 C15—C14—S2 119.55 (16)
C3—C4—H4B 109.7 C19—C14—S2 119.93 (18)
H4A—C4—H4B 108.2 C14—C15—C16 119.7 (2)
N1—C5—C6 111.90 (17) C14—C15—H15 120.1
N1—C5—H5A 109.2 C16—C15—H15 120.1
C6—C5—H5A 109.2 C15—C16—C17 120.8 (2)
N1—C5—H5B 109.2 C15—C16—H16 119.6
C6—C5—H5B 109.2 C17—C16—H16 119.6
H5A—C5—H5B 107.9 C16—C17—C18 118.5 (2)
C7—C6—C5 107.88 (17) C16—C17—C20 120.8 (2)
C7—C6—H6A 110.1 C18—C17—C20 120.7 (2)
C5—C6—H6A 110.1 C19—C18—C17 121.5 (2)
C7—C6—H6B 110.1 C19—C18—H18 119.2
C5—C6—H6B 110.1 C17—C18—H18 119.2
H6A—C6—H6B 108.4 C18—C19—C14 118.9 (2)
C3—C7—C6 125.32 (19) C18—C19—H19 120.5
C3—C7—S1 111.06 (16) C14—C19—H19 120.5
C6—C7—S1 123.52 (15) C17—C20—H20A 109.5
O1—C8—N1 122.4 (2) C17—C20—H20B 109.5
O1—C8—C9 119.81 (19) H20A—C20—H20B 109.5
N1—C8—C9 117.75 (19) C17—C20—H20C 109.5
N2—C9—C8 113.56 (17) H20A—C20—H20C 109.5
N2—C9—H9A 108.9 H20B—C20—H20C 109.5
C8—C9—H9A 108.9
O3—S2—N3—C12 43.28 (18) C10—N2—C9—C8 −71.2 (2)
O2—S2—N3—C12 172.33 (16) O1—C8—C9—N2 112.0 (2)
C14—S2—N3—C12 −72.46 (17) N1—C8—C9—N2 −70.2 (2)
O3—S2—N3—C11 178.81 (15) C9—N2—C10—C11 −179.18 (16)
O2—S2—N3—C11 −52.14 (17) C13—N2—C10—C11 −59.1 (2)
C14—S2—N3—C11 63.07 (16) C12—N3—C11—C10 −56.6 (2)
C7—S1—C1—C2 −1.04 (18) S2—N3—C11—C10 165.84 (13)
S1—C1—C2—C3 1.2 (2) N2—C10—C11—N3 56.3 (2)
C1—C2—C3—C7 −0.7 (3) C11—N3—C12—C13 58.5 (2)
C1—C2—C3—C4 178.0 (2) S2—N3—C12—C13 −163.93 (14)
C8—N1—C4—C3 129.51 (19) C9—N2—C13—C12 −177.01 (17)
C5—N1—C4—C3 −45.7 (2) C10—N2—C13—C12 61.5 (2)
C7—C3—C4—N1 15.1 (3) N3—C12—C13—N2 −60.7 (2)
C2—C3—C4—N1 −163.44 (19) O3—S2—C14—C15 140.22 (17)
C8—N1—C5—C6 −110.0 (2) O2—S2—C14—C15 9.6 (2)
C4—N1—C5—C6 64.8 (2) N3—S2—C14—C15 −105.18 (18)
N1—C5—C6—C7 −46.2 (2) O3—S2—C14—C19 −37.9 (2)
C2—C3—C7—C6 176.41 (19) O2—S2—C14—C19 −168.58 (16)
C4—C3—C7—C6 −2.3 (3) N3—S2—C14—C19 76.67 (18)
C2—C3—C7—S1 −0.1 (2) C19—C14—C15—C16 1.4 (3)
C4—C3—C7—S1 −178.81 (16) S2—C14—C15—C16 −176.74 (16)
C5—C6—C7—C3 17.4 (3) C14—C15—C16—C17 −0.7 (3)
C5—C6—C7—S1 −166.53 (15) C15—C16—C17—C18 −0.8 (3)
C1—S1—C7—C3 0.62 (17) C15—C16—C17—C20 178.8 (2)
C1—S1—C7—C6 −175.95 (18) C16—C17—C18—C19 1.6 (3)
C4—N1—C8—O1 2.8 (3) C20—C17—C18—C19 −178.0 (2)
C5—N1—C8—O1 177.38 (19) C17—C18—C19—C14 −0.9 (3)
C4—N1—C8—C9 −174.92 (17) C15—C14—C19—C18 −0.6 (3)
C5—N1—C8—C9 −0.4 (3) S2—C14—C19—C18 177.51 (16)
C13—N2—C9—C8 168.59 (18)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C5—H5A···S1i 0.99 2.77 3.469 (2) 128.
C6—H6A···O1ii 0.99 2.52 3.470 (3) 161.
C6—H6B···O2iii 0.99 2.51 3.346 (3) 143.

Symmetry codes: (i) x+1/2, −y+3/2, −z+1; (ii) −x, −y+2, −z+1; (iii) −x+1/2, y−1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FL2350).

References

  1. Cattaneo, M. (2009). J. Thromb. Haemost. 7, Suppl. 1, 262–265. [DOI] [PubMed]
  2. Liu, D. K., Liu, Y., Liu, M., Zhang, S. J., Cheng, D., Jin, L. Y., Xu, W. R. & Liu, C. X. (2008). CN Patent 101284838A.
  3. Rigaku/MSC (2005). CrystalClear and CrystalStructure Rigaku/MSC Inc., The Woodlands, Texas, USA.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Wallentin, L. (2009). Eur. Heart J 30, 1964–1977. [DOI] [PubMed]
  6. Zhi, S., Mu, S., Liu, Y. & Liu, D.-K. (2011). Acta Cryst. E67, o1490. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811028716/fl2350sup1.cif

e-67-o2134-sup1.cif (22.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811028716/fl2350Isup2.hkl

e-67-o2134-Isup2.hkl (237.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811028716/fl2350Isup3.cdx

Supplementary material file. DOI: 10.1107/S1600536811028716/fl2350Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES