Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jul 30;67(Pt 8):o2144. doi: 10.1107/S1600536811029011

2,2′-(Propane-1,3-di­yl)bis­(2H-indazole)

Saúl Ovalle a, Sylvain Bernès b, Nancy Pérez Rodríguez a, Perla Elizondo Martínez a,*
PMCID: PMC3213583  PMID: 22091160

Abstract

The title mol­ecule, C17H16N4, is a bis-indazole crystallized in the rare 2H-tautomeric form. Indazole heterocycles are connected by a propane C3 chain, and the mol­ecule is placed on a general position, in contrast to the analogous compound with a central C2 ethane bridge, which was previously found to be placed on an inversion center in the same space group. In the title mol­ecule, indazole rings make a dihedral angle of 60.11 (7)°, and the bridging alkyl chain displays a trans conformation, resulting in a W-shaped mol­ecule. In the crystal, mol­ecules inter­act weakly through π–π contacts between inversion-related pyrazole rings, with a centroid–centroid separation of 3.746 (2) Å.

Related literature

For the synthesis of 2H-indazoles, see: Wu et al. (2010). For studies of 1H←→2H tautomerism in indazoles, see: Alkorta & Elguero (2005); Yu et al. (2006). For 2H-indazole X-ray structures, see: Saczewski et al. (2001); Rodríguez de Barbarín et al. (2006); Ramos Silva et al. (2008); Hurtado et al. (2009); Zhou et al. (2010); Long et al. (2011).graphic file with name e-67-o2144-scheme1.jpg

Experimental

Crystal data

  • C17H16N4

  • M r = 276.34

  • Orthorhombic, Inline graphic

  • a = 8.182 (2) Å

  • b = 10.549 (4) Å

  • c = 34.179 (9) Å

  • V = 2950.1 (16) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 K

  • 0.60 × 0.40 × 0.18 mm

Data collection

  • Siemens P4 diffractometer

  • 8195 measured reflections

  • 2621 independent reflections

  • 1607 reflections with I > 2σ(I)

  • R int = 0.042

  • 3 standard reflections every 97 reflections intensity decay: 1.5%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049

  • wR(F 2) = 0.162

  • S = 1.10

  • 2621 reflections

  • 191 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811029011/aa2015sup1.cif

e-67-o2144-sup1.cif (23.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811029011/aa2015Isup2.hkl

e-67-o2144-Isup2.hkl (128.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811029011/aa2015Isup3.mol

Supplementary material file. DOI: 10.1107/S1600536811029011/aa2015Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the PAICyT program (Programa de Apoyo a la Investigación Científica y Tecnológica) of the Universidad Autónoma de Nuevo León for supporting this work (project No. T004–09).

supplementary crystallographic information

Comment

Although efficient synthetic routes for 2H-indazoles are available (e.g. Wu et al., 2010) few molecules belonging to this family of heterocyclic compounds have been X-ray characterized up to now. This is due, in part, to the fact that 1H tautomer for indazoles is frequently more stable than the 2H tautomer, although the opposite situation may occur for some derivatives (Alkorta & Elguero, 2005; Yu et al., 2006). On the other hand, in the case of N2-substituted indazoles, only the 2H tautomer is allowed. Tautomerism equilibrium study is important, since bioavailability and other pharmacological properties of indazoles may be dependent on such equilibria (e.g. Ramos Silva et al., 2008). Indazole derivatives have been used, for instance, for their anti-inflammatory activity.

The title compound was prepared through a three steps procedure, the key step being the cyclization of a nitroamine derivative (compound P, see Fig. 1 and Experimental). The resulting bis-indazole consists of two 2H-indazole heterocycles connected by an alkyl C3 bridge (Fig. 2). The molecule lies in a general position, in space group Pbca. It is worth noting that the analogue compound with a central C2 bridge, for which we reported the X-ray structure (Rodríguez de Barbarín et al., 2006), was found to crystallize in the same space group, although the molecule was placed on an inversion center. From this pair of structures now determined, we can propose the following general rule for n-alkyl bridged bis(2H-indazoles): even-alkyl compounds should be centrosymmetric, while odd-alkyl derivatives are expected to be non-centrosymmetric, as the title compound.

Molecular dimensions observed in the title compound compare well with those reported for other 2H-indazoles (Saczewski et al., 2001; Rodríguez de Barbarín et al., 2006; Hurtado et al., 2009; Zhou et al., 2010; Long et al., 2011). Indazole rings make a dihedral angle of 60.11 (7)°. Torsion angles N2—C8—C9—C10 and C8—C9—C10—N12, -176.7 (2) and 173.5 (2)° respectively, characterize the trans conformation for the alkyl bridge, resulting in a W-shaped molecule. The crystal structure features π–π interactions of modest strength, between molecules related by inversion (Fig. 3). The separation between the centroid of the pyrazole ring N11/N12/C11/C17/C16 and the symmetry-related centroid at position -x, 1 - y, 1 - z, is 3.746 (2) Å.

Experimental

The title ligand, PI, was obtained by a three steps reaction procedure (Fig. 1). The condensation between 1,3-diaminopropane and 2-nitrobenzaldehyde produced the corresponding imine. Selective reduction of imine bonds with sodium borohydride in methanol gave amine P, which was isolated. Then, 0.044 g of Pd/C was added to a solution of P (0.005 mol) in ethanol. This mixture was refluxed for 5.5 h, with addition of hydrazine monohydrate (0.110 mol) during the first 3 h. The mixture was filtered, distilled, and the organic phase was extracted. The product was purified by column chromatography with silica gel and ethyl acetate:hexane (2:1) as eluent. Suitable crystals were obtained by slow evaporation of an ethanol solution at 298 K. Mp 389.4–390 K; analysis found (calc. for C17H16N4): C 73.6 (73.9), H 5.8 (5.8), N 20.5% (20.3%); IR RTA: 3108 (CH Ar. νs), 2950 (–CH2– νs), 1625 (C=N Ar. δs), 1514, 1467 (C=C Ar. νs and νas). 1H NMR (300 MHz, CDCl3): δ, p.p.m.: 2.73 (2H, m, –CH2–), 4.41 (4H, t, N—CH2), 7.10 (2H, dd, Ar), 7.31 (2H, dd, Ar), 7.66 (2H, dd, Ar), 7.73 (2H, td, Ar), 7.95 (2H, s, NH).

Refinement

All H atoms were placed in idealized positions and refined as riding to their parent C atoms, with bond lengths fixed to 0.97 (methylene CH2) or 0.93 Å (aromatic CH). Isotropic displacement parameters for H atoms were calculated as Uiso(H) = 1.2 Ueq(carrier atom).

Figures

Fig. 1.

Fig. 1.

Synthetic route for the title compound. P is the key intermediate and PI is the title compound.

Fig. 2.

Fig. 2.

ORTEP-like view of the title molecule, with displacement ellipsoids at the 30% probability level for non-H atoms.

Fig. 3.

Fig. 3.

A part of the crystal structure representing two molecules related by inversion, which interact through a π–π contact involving pyrazole rings (dashed line).

Crystal data

C17H16N4 Dx = 1.244 Mg m3
Mr = 276.34 Melting point: 389 K
Orthorhombic, Pbca Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 77 reflections
a = 8.182 (2) Å θ = 4.6–12.4°
b = 10.549 (4) Å µ = 0.08 mm1
c = 34.179 (9) Å T = 298 K
V = 2950.1 (16) Å3 Prism, yellow
Z = 8 0.60 × 0.40 × 0.18 mm
F(000) = 1168

Data collection

Siemens P4 diffractometer Rint = 0.042
Radiation source: fine-focus sealed tube θmax = 25.1°, θmin = 2.4°
graphite h = −9→8
ω scans k = −12→12
8195 measured reflections l = −40→40
2621 independent reflections 3 standard reflections every 97 reflections
1607 reflections with I > 2σ(I) intensity decay: 1.5%

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049 H-atom parameters constrained
wR(F2) = 0.162 w = 1/[σ2(Fo2) + (0.0659P)2 + 0.9616P] where P = (Fo2 + 2Fc2)/3
S = 1.10 (Δ/σ)max < 0.001
2621 reflections Δρmax = 0.20 e Å3
191 parameters Δρmin = −0.21 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 constraints Extinction coefficient: 0.0159 (17)
Primary atom site location: structure-invariant direct methods

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.3628 (3) 0.67210 (17) 0.33910 (5) 0.0640 (6)
N2 0.2422 (2) 0.75293 (17) 0.34924 (5) 0.0563 (5)
C1 0.2608 (3) 0.8690 (2) 0.33476 (6) 0.0622 (7)
H1A 0.1914 0.9378 0.3385 0.075*
C2 0.4896 (4) 0.9559 (3) 0.29004 (7) 0.0773 (8)
H2A 0.4529 1.0390 0.2876 0.093*
C3 0.6261 (5) 0.9172 (3) 0.27178 (8) 0.0902 (10)
H3A 0.6828 0.9744 0.2561 0.108*
C4 0.6856 (4) 0.7935 (4) 0.27562 (9) 0.0986 (11)
H4A 0.7815 0.7708 0.2628 0.118*
C5 0.6062 (4) 0.7056 (3) 0.29769 (8) 0.0847 (9)
H5A 0.6463 0.6235 0.3002 0.102*
C6 0.4614 (3) 0.7431 (2) 0.31655 (6) 0.0610 (7)
C7 0.4032 (3) 0.8675 (2) 0.31308 (6) 0.0604 (7)
C8 0.1158 (3) 0.7097 (2) 0.37586 (6) 0.0639 (7)
H8A 0.0822 0.6247 0.3686 0.077*
H8B 0.0214 0.7649 0.3737 0.077*
C9 0.1757 (3) 0.7094 (2) 0.41760 (7) 0.0646 (7)
H9A 0.2737 0.6582 0.4195 0.078*
H9B 0.2031 0.7952 0.4254 0.078*
C10 0.0474 (3) 0.6575 (3) 0.44453 (6) 0.0671 (7)
H10B −0.0458 0.7143 0.4447 0.080*
H10C 0.0109 0.5760 0.4348 0.080*
N11 0.2399 (2) 0.56892 (18) 0.49101 (5) 0.0611 (6)
N12 0.1075 (2) 0.64232 (18) 0.48438 (5) 0.0571 (5)
C11 0.0399 (3) 0.6887 (2) 0.51674 (7) 0.0615 (7)
H11B −0.0516 0.7409 0.5181 0.074*
C12 0.1239 (4) 0.6545 (2) 0.58912 (7) 0.0696 (7)
H12B 0.0444 0.7040 0.6012 0.083*
C13 0.2351 (3) 0.5902 (3) 0.61062 (7) 0.0699 (7)
H13B 0.2306 0.5947 0.6378 0.084*
C14 0.3567 (3) 0.5170 (2) 0.59287 (8) 0.0707 (7)
H14C 0.4308 0.4737 0.6086 0.085*
C15 0.3702 (3) 0.5070 (2) 0.55328 (7) 0.0683 (7)
H15B 0.4538 0.4603 0.5418 0.082*
C16 0.2530 (3) 0.5701 (2) 0.53037 (6) 0.0533 (6)
C17 0.1312 (3) 0.6448 (2) 0.54797 (7) 0.0555 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0772 (15) 0.0555 (11) 0.0593 (11) 0.0036 (11) 0.0102 (11) 0.0011 (9)
N2 0.0647 (13) 0.0543 (10) 0.0499 (10) 0.0009 (10) 0.0040 (10) 0.0007 (8)
C1 0.0780 (18) 0.0525 (13) 0.0560 (13) 0.0050 (12) −0.0062 (14) 0.0031 (10)
C2 0.107 (2) 0.0695 (16) 0.0558 (14) −0.0202 (17) −0.0037 (16) 0.0056 (12)
C3 0.113 (3) 0.095 (2) 0.0633 (17) −0.036 (2) 0.0138 (18) 0.0004 (15)
C4 0.100 (3) 0.118 (3) 0.0780 (19) −0.011 (2) 0.0320 (18) −0.0046 (19)
C5 0.095 (2) 0.0832 (19) 0.0754 (17) 0.0069 (18) 0.0252 (17) −0.0047 (15)
C6 0.0760 (17) 0.0596 (14) 0.0474 (12) −0.0041 (13) 0.0039 (12) −0.0038 (10)
C7 0.0796 (18) 0.0570 (13) 0.0447 (12) −0.0064 (13) −0.0031 (12) 0.0003 (10)
C8 0.0633 (16) 0.0713 (15) 0.0572 (13) −0.0018 (13) 0.0053 (12) 0.0041 (11)
C9 0.0662 (17) 0.0707 (15) 0.0570 (13) −0.0090 (13) 0.0045 (12) 0.0051 (12)
C10 0.0665 (17) 0.0764 (16) 0.0583 (14) −0.0086 (14) 0.0020 (13) 0.0044 (12)
N11 0.0601 (13) 0.0607 (12) 0.0626 (11) 0.0070 (10) 0.0088 (10) 0.0013 (9)
N12 0.0542 (12) 0.0595 (11) 0.0576 (11) 0.0007 (10) 0.0071 (10) 0.0047 (9)
C11 0.0608 (16) 0.0610 (14) 0.0628 (15) 0.0081 (12) 0.0103 (12) 0.0004 (11)
C12 0.0737 (18) 0.0719 (16) 0.0631 (15) 0.0076 (15) 0.0085 (14) −0.0050 (12)
C13 0.0792 (19) 0.0731 (16) 0.0574 (13) 0.0005 (16) −0.0023 (14) 0.0011 (12)
C14 0.0732 (19) 0.0667 (15) 0.0724 (16) 0.0059 (14) −0.0063 (14) 0.0087 (13)
C15 0.0687 (17) 0.0639 (14) 0.0724 (16) 0.0098 (13) 0.0054 (14) 0.0012 (12)
C16 0.0535 (14) 0.0470 (11) 0.0593 (13) −0.0014 (11) 0.0061 (11) 0.0023 (10)
C17 0.0570 (15) 0.0505 (12) 0.0590 (13) 0.0018 (11) 0.0072 (12) 0.0015 (10)

Geometric parameters (Å, °)

N1—C6 1.343 (3) C9—H9A 0.9700
N1—N2 1.350 (3) C9—H9B 0.9700
N2—C1 1.329 (3) C10—N12 1.457 (3)
N2—C8 1.451 (3) C10—H10B 0.9700
C1—C7 1.381 (4) C10—H10C 0.9700
C1—H1A 0.9300 N11—C16 1.350 (3)
C2—C3 1.343 (4) N11—N12 1.351 (3)
C2—C7 1.410 (3) N12—C11 1.330 (3)
C2—H2A 0.9300 C11—C17 1.383 (3)
C3—C4 1.400 (5) C11—H11B 0.9300
C3—H3A 0.9300 C12—C13 1.353 (4)
C4—C5 1.360 (4) C12—C17 1.411 (3)
C4—H4A 0.9300 C12—H12B 0.9300
C5—C6 1.406 (4) C13—C14 1.398 (4)
C5—H5A 0.9300 C13—H13B 0.9300
C6—C7 1.401 (3) C14—C15 1.362 (4)
C8—C9 1.509 (3) C14—H14C 0.9300
C8—H8A 0.9700 C15—C16 1.405 (3)
C8—H8B 0.9700 C15—H15B 0.9300
C9—C10 1.499 (3) C16—C17 1.406 (3)
C6—N1—N2 103.55 (18) C10—C9—H9B 109.5
C1—N2—N1 113.7 (2) C8—C9—H9B 109.5
C1—N2—C8 127.2 (2) H9A—C9—H9B 108.1
N1—N2—C8 118.95 (18) N12—C10—C9 112.2 (2)
N2—C1—C7 106.6 (2) N12—C10—H10B 109.2
N2—C1—H1A 126.7 C9—C10—H10B 109.2
C7—C1—H1A 126.7 N12—C10—H10C 109.2
C3—C2—C7 118.4 (3) C9—C10—H10C 109.2
C3—C2—H2A 120.8 H10B—C10—H10C 107.9
C7—C2—H2A 120.8 C16—N11—N12 103.05 (18)
C2—C3—C4 121.9 (3) C11—N12—N11 113.89 (19)
C2—C3—H3A 119.0 C11—N12—C10 126.6 (2)
C4—C3—H3A 119.0 N11—N12—C10 119.37 (19)
C5—C4—C3 121.5 (3) N12—C11—C17 107.1 (2)
C5—C4—H4A 119.3 N12—C11—H11B 126.5
C3—C4—H4A 119.3 C17—C11—H11B 126.5
C4—C5—C6 117.7 (3) C13—C12—C17 118.5 (2)
C4—C5—H5A 121.1 C13—C12—H12B 120.8
C6—C5—H5A 121.1 C17—C12—H12B 120.8
N1—C6—C7 111.5 (2) C12—C13—C14 121.4 (2)
N1—C6—C5 127.7 (2) C12—C13—H13B 119.3
C7—C6—C5 120.7 (2) C14—C13—H13B 119.3
C1—C7—C6 104.6 (2) C15—C14—C13 122.1 (2)
C1—C7—C2 135.6 (3) C15—C14—H14C 118.9
C6—C7—C2 119.8 (3) C13—C14—H14C 118.9
N2—C8—C9 111.3 (2) C14—C15—C16 117.5 (2)
N2—C8—H8A 109.4 C14—C15—H15B 121.2
C9—C8—H8A 109.4 C16—C15—H15B 121.2
N2—C8—H8B 109.4 N11—C16—C15 127.3 (2)
C9—C8—H8B 109.4 N11—C16—C17 112.0 (2)
H8A—C8—H8B 108.0 C15—C16—C17 120.7 (2)
C10—C9—C8 110.7 (2) C11—C17—C16 103.9 (2)
C10—C9—H9A 109.5 C11—C17—C12 136.2 (2)
C8—C9—H9A 109.5 C16—C17—C12 119.8 (2)
C6—N1—N2—C1 −0.6 (2) C8—C9—C10—N12 173.5 (2)
C6—N1—N2—C8 −176.64 (19) C16—N11—N12—C11 0.5 (3)
N1—N2—C1—C7 0.3 (3) C16—N11—N12—C10 −176.1 (2)
C8—N2—C1—C7 176.0 (2) C9—C10—N12—C11 126.4 (3)
C7—C2—C3—C4 −1.2 (4) C9—C10—N12—N11 −57.4 (3)
C2—C3—C4—C5 1.0 (5) N11—N12—C11—C17 0.0 (3)
C3—C4—C5—C6 0.2 (5) C10—N12—C11—C17 176.3 (2)
N2—N1—C6—C7 0.6 (3) C17—C12—C13—C14 1.0 (4)
N2—N1—C6—C5 −179.3 (2) C12—C13—C14—C15 0.3 (4)
C4—C5—C6—N1 178.9 (3) C13—C14—C15—C16 −2.1 (4)
C4—C5—C6—C7 −1.0 (4) N12—N11—C16—C15 179.2 (2)
N2—C1—C7—C6 0.1 (2) N12—N11—C16—C17 −0.8 (2)
N2—C1—C7—C2 178.5 (3) C14—C15—C16—N11 −177.3 (2)
N1—C6—C7—C1 −0.5 (3) C14—C15—C16—C17 2.7 (4)
C5—C6—C7—C1 179.5 (2) N12—C11—C17—C16 −0.5 (3)
N1—C6—C7—C2 −179.2 (2) N12—C11—C17—C12 −177.6 (3)
C5—C6—C7—C2 0.8 (4) N11—C16—C17—C11 0.8 (3)
C3—C2—C7—C1 −177.9 (3) C15—C16—C17—C11 −179.2 (2)
C3—C2—C7—C6 0.4 (4) N11—C16—C17—C12 178.5 (2)
C1—N2—C8—C9 −97.6 (3) C15—C16—C17—C12 −1.5 (3)
N1—N2—C8—C9 77.9 (3) C13—C12—C17—C11 176.4 (3)
N2—C8—C9—C10 −176.7 (2) C13—C12—C17—C16 −0.4 (4)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AA2015).

References

  1. Alkorta, I. & Elguero, J. (2005). J. Phys. Org. Chem. 18, 719–724.
  2. Hurtado, J., Mac-Leod Carey, D., Muñoz-Castro, A., Arratia-Pérez, R., Quijada, R., Wu, G., Rojas, R. & Valderrama, M. (2009). J. Organomet. Chem. 694, 2636–2641.
  3. Long, L., Liu, B.-N., Liu, M. & Liu, D.-K. (2011). Acta Cryst. E67, o1546. [DOI] [PMC free article] [PubMed]
  4. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  5. Ramos Silva, M., Moreira, V. M., Cardoso, C., Matos Beja, A. & Salvador, J. A. R. (2008). Acta Cryst. C64, o217–o219. [DOI] [PubMed]
  6. Rodríguez de Barbarín, C., Nájera, B., Elizondo, P. & Cerda, P. (2006). Acta Cryst. E62, o5423–o5424.
  7. Saczewski, F., Saczewski, J. & Gdaniec, M. (2001). Chem. Pharm. Bull. 49, 1203–1206. [DOI] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Siemens (1996). XSCANS Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  10. Wu, C., Fang, Y., Larock, R. C. & Shi, F. (2010). Org. Lett. 12, 2234–2237. [DOI] [PMC free article] [PubMed]
  11. Yu, H.-Y., Li, B.-Z. & Guo, Y.-M. (2006). Chin. J. Chem. Phys 19, 233–237.
  12. Zhou, X., Qin, X. & Zhang, J. (2010). Acta Cryst. E66, o2732. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811029011/aa2015sup1.cif

e-67-o2144-sup1.cif (23.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811029011/aa2015Isup2.hkl

e-67-o2144-Isup2.hkl (128.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811029011/aa2015Isup3.mol

Supplementary material file. DOI: 10.1107/S1600536811029011/aa2015Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES