Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jul 30;67(Pt 8):o2149. doi: 10.1107/S1600536811029436

N-(2,4,6-Trichloro­phen­yl)maleamic acid

K Shakuntala a, Sabine Foro b, B Thimme Gowda a,*
PMCID: PMC3213587  PMID: 22091164

Abstract

In the crystal structure of the title compound, C10H6Cl3NO3, the conformation of the amide bond is trans. The C=O and O—H bonds of the acid group are in the relatively rare anti position to each other. This is a consequence of the intra­molecular O—H⋯O hydrogen bond donated to the amide carbonyl group stabilizing the mol­ecular structure. In the crystal, inter­molecular N—H⋯O hydrogen bonds link the mol­ecules into zigzag chains along the c axis.

Related literature

For studies on the effects of substituents on the structures and other aspects of N-(ar­yl)-amides, see: Arjunan et al. (2004); Bhat & Gowda (2000); Gowda et al. (2000, 2009); Lo & Ng (2009); Prasad et al. (2002), and on N-(ar­yl)-methane­sulfonamides, see: Jayalakshmi & Gowda (2004). For modes of inter­linking carb­oxy­lic acids by hydrogen bonds, see: Leiserowitz (1976).graphic file with name e-67-o2149-scheme1.jpg

Experimental

Crystal data

  • C10H6Cl3NO3

  • M r = 294.51

  • Monoclinic, Inline graphic

  • a = 21.928 (3) Å

  • b = 8.2678 (8) Å

  • c = 13.248 (2) Å

  • β = 99.08 (1)°

  • V = 2371.7 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.77 mm−1

  • T = 293 K

  • 0.44 × 0.44 × 0.40 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) T min = 0.729, T max = 0.749

  • 4862 measured reflections

  • 2436 independent reflections

  • 2000 reflections with I > 2σ(I)

  • R int = 0.012

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035

  • wR(F 2) = 0.094

  • S = 1.08

  • 2436 reflections

  • 161 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.44 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811029436/bt5581sup1.cif

e-67-o2149-sup1.cif (15.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811029436/bt5581Isup2.hkl

e-67-o2149-Isup2.hkl (119.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811029436/bt5581Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.84 (2) 2.04 (2) 2.884 (2) 175 (2)
O3—H3O⋯O1 0.82 (2) 1.69 (2) 2.498 (2) 168 (3)

Symmetry code: (i) Inline graphic.

Acknowledgments

KS thanks the University Grants Commission, Government of India, New Delhi, for the award of a research fellowship under its faculty improvement program.

supplementary crystallographic information

Comment

The amide moiety is an important constituent of many biologically significant compounds. As part of our studies on the effects of ring and side chain substitutions on the structures and other aspects of N-(aryl)-amides (Arjunan et al., 2004; Bhat & Gowda, 2000; Gowda et al., 2000, 2009; Prasad et al., 2002) and N-(aryl)-methanesulfonamides (Jayalakshmi & Gowda, 2004), the crystal structure of N-(2,4,6-trimethylphenyl)-maleamic acid (I) has been determined. The conformation of the amide O atom is anti to the H atom attached to the adjacent C atom, while the carboxyl O atom is syn to the H atom attached to its adjacent C atom (Fig.1). The rare anti conformation of the C=O and O–H bonds of the acid group has been observed, similar to that obsrved in N-(2,4,6-trimethylphenyl)-maleamic acid (Gowda et al., 2009) and N-phenylmaleamic acid (Lo & Ng, 2009), but contrary to the more general syn conformation observed for C=O and O–H bonds. The various modes of interlinking carboxylic acids by hydrogen bonds is described elsewhere (Leiserowitz, 1976).

The maleamic moiety includes a short intramolecular hydrogen O–H···O bond (Table 1). The C8–C9 bond length of 1.331 (3)Å clearly indicates the double bond character. The dihedral angle between the phenyl ring and the amido group –NHCO– is 83.2 (2)°. In the crystal structure, the intermolecular N–H···O hydrogen bonds link the molecules into column like chains along b-axis (Fig. 2).

Experimental

The solution of maleic anhydride (0.025 mol) in toluene (25 ml) was treated dropwise with the solution of 2,4,6-trichloroaniline (0.025 mol) also in toluene (20 ml) with constant stirring. The resulting mixture was stirred for about 30 min and set aside for an additional 30 min at room temperature for the completion of reaction. The mixture was then treated with dilute hydrochloric acid to remove the unreacted 2,4,6-trichloroaniline. The resultant solid N-(2,4,6-trichlorophenyl)maleamic acid was filtered under suction and washed thoroughly with water to remove the unreacted maleic anhydride and maleic acid. It was recrystallized to constant melting point from ethanol. The purity of the compound was checked and characterized by its infrared spectra.

Prism like colorless single crystals used in X-ray diffraction studies were grown in an ethanol solution by slow evaporation at room temperature.

Refinement

The H atoms of the NH group and the OH group were located in a difference map and later restrained to the distance N—H = 0.86 (2) Å and O—H = 0.82 (2) Å, respectively. The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93 Å. All H atoms were refined with isotropic displacement parameters set to 1.2 times of the Ueq of the parent atom.

Figures

Fig. 1.

Fig. 1.

Molecular structure of (I), showing the atom labelling scheme and displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Molecular packing of (I) with hydrogen bonding shown as dashed lines.

Crystal data

C10H6Cl3NO3 F(000) = 1184
Mr = 294.51 Dx = 1.650 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 2201 reflections
a = 21.928 (3) Å θ = 2.6–27.9°
b = 8.2678 (8) Å µ = 0.77 mm1
c = 13.248 (2) Å T = 293 K
β = 99.08 (1)° Prism, colourless
V = 2371.7 (5) Å3 0.44 × 0.44 × 0.40 mm
Z = 8

Data collection

Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector 2436 independent reflections
Radiation source: fine-focus sealed tube 2000 reflections with I > 2σ(I)
graphite Rint = 0.012
Rotation method data acquisition using ω and φ scans θmax = 26.3°, θmin = 2.6°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) h = −21→27
Tmin = 0.729, Tmax = 0.749 k = −9→10
4862 measured reflections l = −14→16

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.0453P)2 + 2.1238P] where P = (Fo2 + 2Fc2)/3
S = 1.08 (Δ/σ)max = 0.008
2436 reflections Δρmax = 0.55 e Å3
161 parameters Δρmin = −0.44 e Å3
2 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0069 (5)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.01367 (3) 0.14374 (7) 0.38180 (5) 0.0547 (2)
Cl2 −0.05298 (3) 0.76688 (8) 0.35643 (5) 0.0546 (2)
Cl3 0.18696 (3) 0.61105 (7) 0.44095 (6) 0.0594 (2)
O1 0.13622 (8) 0.26049 (19) 0.24188 (11) 0.0489 (4)
O2 0.20438 (7) −0.1698 (2) 0.11143 (12) 0.0491 (4)
O3 0.15810 (9) 0.0634 (2) 0.10918 (12) 0.0554 (5)
H3O 0.1526 (15) 0.138 (3) 0.147 (2) 0.083*
N1 0.14268 (8) 0.2673 (2) 0.41225 (12) 0.0356 (4)
H1N 0.1593 (10) 0.234 (3) 0.4704 (14) 0.043*
C1 0.09629 (9) 0.3880 (2) 0.40607 (13) 0.0325 (4)
C2 0.03409 (10) 0.3452 (2) 0.38660 (14) 0.0355 (4)
C3 −0.01220 (9) 0.4607 (3) 0.37139 (15) 0.0389 (5)
H3 −0.0535 0.4305 0.3569 0.047*
C4 0.00448 (9) 0.6214 (3) 0.37825 (14) 0.0362 (5)
C5 0.06509 (10) 0.6697 (3) 0.40216 (16) 0.0394 (5)
H5 0.0753 0.7787 0.4096 0.047*
C6 0.11040 (9) 0.5516 (2) 0.41482 (15) 0.0358 (4)
C7 0.15744 (9) 0.2035 (2) 0.32652 (15) 0.0344 (4)
C8 0.19895 (10) 0.0623 (3) 0.34006 (15) 0.0391 (5)
H8 0.2183 0.0426 0.4066 0.047*
C9 0.21238 (10) −0.0406 (3) 0.26948 (16) 0.0407 (5)
H9 0.2405 −0.1206 0.2950 0.049*
C10 0.19092 (9) −0.0518 (3) 0.15725 (15) 0.0371 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0623 (4) 0.0373 (3) 0.0631 (4) −0.0113 (3) 0.0060 (3) −0.0095 (3)
Cl2 0.0499 (3) 0.0574 (4) 0.0557 (4) 0.0228 (3) 0.0064 (3) −0.0018 (3)
Cl3 0.0376 (3) 0.0433 (3) 0.0960 (5) −0.0025 (2) 0.0072 (3) 0.0033 (3)
O1 0.0625 (10) 0.0509 (10) 0.0327 (8) 0.0257 (8) 0.0056 (7) 0.0070 (7)
O2 0.0507 (9) 0.0483 (9) 0.0485 (9) 0.0001 (7) 0.0086 (7) −0.0150 (7)
O3 0.0717 (12) 0.0589 (11) 0.0340 (8) 0.0200 (9) 0.0034 (7) −0.0018 (7)
N1 0.0442 (10) 0.0324 (9) 0.0292 (8) 0.0089 (7) 0.0026 (7) 0.0037 (7)
C1 0.0398 (10) 0.0322 (10) 0.0263 (9) 0.0039 (8) 0.0073 (7) 0.0011 (8)
C2 0.0437 (11) 0.0346 (10) 0.0288 (9) −0.0037 (8) 0.0075 (8) −0.0044 (8)
C3 0.0345 (10) 0.0498 (13) 0.0330 (10) −0.0009 (9) 0.0073 (8) −0.0067 (9)
C4 0.0391 (11) 0.0403 (11) 0.0302 (10) 0.0108 (9) 0.0085 (8) −0.0009 (8)
C5 0.0453 (12) 0.0307 (10) 0.0433 (11) 0.0040 (9) 0.0108 (9) 0.0018 (9)
C6 0.0351 (10) 0.0341 (10) 0.0390 (11) 0.0007 (8) 0.0082 (8) 0.0021 (8)
C7 0.0379 (10) 0.0326 (10) 0.0322 (10) 0.0033 (8) 0.0039 (8) 0.0019 (8)
C8 0.0456 (12) 0.0380 (11) 0.0315 (10) 0.0102 (9) −0.0006 (8) 0.0018 (8)
C9 0.0425 (12) 0.0352 (11) 0.0429 (11) 0.0107 (9) 0.0018 (9) 0.0007 (9)
C10 0.0320 (10) 0.0415 (11) 0.0387 (11) −0.0035 (9) 0.0087 (8) −0.0040 (9)

Geometric parameters (Å, °)

Cl1—C2 1.723 (2) C2—C3 1.385 (3)
Cl2—C4 1.733 (2) C3—C4 1.377 (3)
Cl3—C6 1.731 (2) C3—H3 0.9300
O1—C7 1.237 (2) C4—C5 1.376 (3)
O2—C10 1.210 (3) C5—C6 1.384 (3)
O3—C10 1.299 (3) C5—H5 0.9300
O3—H3O 0.819 (18) C7—C8 1.473 (3)
N1—C7 1.338 (3) C8—C9 1.331 (3)
N1—C1 1.418 (2) C8—H8 0.9300
N1—H1N 0.843 (16) C9—C10 1.490 (3)
C1—C6 1.388 (3) C9—H9 0.9300
C1—C2 1.393 (3)
C10—O3—H3O 112 (2) C4—C5—H5 120.9
C7—N1—C1 119.74 (16) C6—C5—H5 120.9
C7—N1—H1N 121.4 (16) C5—C6—C1 122.08 (19)
C1—N1—H1N 118.8 (16) C5—C6—Cl3 118.60 (16)
C6—C1—C2 117.51 (18) C1—C6—Cl3 119.32 (15)
C6—C1—N1 122.16 (18) O1—C7—N1 120.82 (18)
C2—C1—N1 120.28 (18) O1—C7—C8 123.28 (18)
C3—C2—C1 121.69 (19) N1—C7—C8 115.89 (17)
C3—C2—Cl1 118.74 (16) C9—C8—C7 128.44 (19)
C1—C2—Cl1 119.58 (16) C9—C8—H8 115.8
C4—C3—C2 118.33 (19) C7—C8—H8 115.8
C4—C3—H3 120.8 C8—C9—C10 132.11 (19)
C2—C3—H3 120.8 C8—C9—H9 113.9
C5—C4—C3 122.17 (19) C10—C9—H9 113.9
C5—C4—Cl2 119.15 (16) O2—C10—O3 120.37 (19)
C3—C4—Cl2 118.69 (16) O2—C10—C9 119.2 (2)
C4—C5—C6 118.12 (19) O3—C10—C9 120.47 (18)
C7—N1—C1—C6 −98.7 (2) C4—C5—C6—Cl3 178.00 (15)
C7—N1—C1—C2 78.7 (2) C2—C1—C6—C5 −1.7 (3)
C6—C1—C2—C3 3.1 (3) N1—C1—C6—C5 175.71 (18)
N1—C1—C2—C3 −174.36 (17) C2—C1—C6—Cl3 179.01 (14)
C6—C1—C2—Cl1 −176.52 (14) N1—C1—C6—Cl3 −3.5 (3)
N1—C1—C2—Cl1 6.0 (2) C1—N1—C7—O1 8.1 (3)
C1—C2—C3—C4 −1.5 (3) C1—N1—C7—C8 −170.97 (18)
Cl1—C2—C3—C4 178.18 (15) O1—C7—C8—C9 −11.8 (4)
C2—C3—C4—C5 −1.7 (3) N1—C7—C8—C9 167.2 (2)
C2—C3—C4—Cl2 178.53 (14) C7—C8—C9—C10 −1.0 (4)
C3—C4—C5—C6 3.0 (3) C8—C9—C10—O2 −170.9 (2)
Cl2—C4—C5—C6 −177.20 (15) C8—C9—C10—O3 9.0 (4)
C4—C5—C6—C1 −1.2 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O2i 0.84 (2) 2.04 (2) 2.884 (2) 175 (2)
O3—H3O···O1 0.82 (2) 1.69 (2) 2.498 (2) 168 (3)

Symmetry codes: (i) x, −y, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5581).

References

  1. Arjunan, V., Mohan, S., Subramanian, S. & Gowda, B. T. (2004). Spectrochim. Acta Part A, 60, 1141–1159. [DOI] [PubMed]
  2. Bhat, D. K. & Gowda, B. T. (2000). J. Indian Chem. Soc. 77, 279–284.
  3. Gowda, B. T., Kumar, B. H. A. & Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 721–728.
  4. Gowda, B. T., Tokarčík, M., Kožíšek, J., Shakuntala, K. & Fuess, H. (2009). Acta Cryst. E65, o2945. [DOI] [PMC free article] [PubMed]
  5. Jayalakshmi, K. L. & Gowda, B. T. (2004). Z. Naturforsch. Teil A, 55, 491–500.
  6. Leiserowitz, L. (1976). Acta Cryst. B32, 775–802.
  7. Lo, K. M. & Ng, S. W. (2009). Acta Cryst. E65, o1101. [DOI] [PMC free article] [PubMed]
  8. Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  9. Prasad, S. M., Sinha, R. B. P., Mandal, D. K. & Rani, A. (2002). Acta Cryst. E58, o891–o892.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811029436/bt5581sup1.cif

e-67-o2149-sup1.cif (15.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811029436/bt5581Isup2.hkl

e-67-o2149-Isup2.hkl (119.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811029436/bt5581Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES