Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jul 30;67(Pt 8):o2157. doi: 10.1107/S1600536811029473

(2Z)-3-(4-Chloro­anilino)-1-(5-hy­droxy-3-methyl-1-phenyl-1H-pyrazol-4-yl)but-2-en-1-one

Abdullah M Asiri a,b,, Abdulrahman O Al-Youbi a, Khalid A Alamry a, Hassan M Faidallah a, Seik Weng Ng c,a, Edward R T Tiekink c,*
PMCID: PMC3213593  PMID: 22091170

Abstract

With the exception of the terminal benzene rings, the atoms in the title compound, C20H18ClN3O2, are approximately coplanar (r.m.s. deviation = 0.0495 Å). The benzene/chloro­benzene rings form dihedral angles of 3.02 (4) and 41.59 (5)°, respectively, with this plane. The hy­droxy, amino and carbonyl groups all lie to the same side of the mol­ecule, enabling the formation of intra­molecular O—H⋯O and N—H⋯O hydrogen bonds that close S(6) rings. The configuration about the 2-butene bond is Z. Supra­molecular chains mediated by C—H⋯Cl inter­actions and aligned along the c axis are found in the crystal packing. These assemble into layers that are connected by weak π–π inter­actions between centrosymmetrically related chloro­benzene rings [3.8156 (9) Å].

Related literature

For background to the synthesis, see: Gelin et al. (1983); Bendaas et al. (1999).graphic file with name e-67-o2157-scheme1.jpg

Experimental

Crystal data

  • C20H18ClN3O2

  • M r = 367.82

  • Monoclinic, Inline graphic

  • a = 10.7782 (3) Å

  • b = 12.6349 (4) Å

  • c = 12.9071 (4) Å

  • β = 100.956 (3)°

  • V = 1725.67 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 100 K

  • 0.30 × 0.25 × 0.20 mm

Data collection

  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) T min = 0.931, T max = 0.953

  • 8785 measured reflections

  • 3860 independent reflections

  • 3199 reflections with I > 2σ(I)

  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.103

  • S = 1.01

  • 3860 reflections

  • 245 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811029473/hg5069sup1.cif

e-67-o2157-sup1.cif (20.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811029473/hg5069Isup2.hkl

e-67-o2157-Isup2.hkl (189.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811029473/hg5069Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2 0.96 (3) 1.64 (3) 2.5283 (16) 153 (3)
N3—H3⋯O2 0.91 (2) 1.93 (2) 2.6678 (18) 136.9 (18)
C4—H4⋯Cl1i 0.95 2.81 3.6217 (18) 144

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors are thankful to the Center of Excellence for Advanced Materials Research and the Chemistry Department at King Abdulaziz University for providing the research facilities. They also thank the University of Malaya for supporting this study.

supplementary crystallographic information

Comment

The title compound (I) was isolated during an investigation of reactions between pyrazoles and aniline derivatives following literature precedents (Gelin et al., 1983; Bendaas et al., 1999). The molecular structure of (I), Fig. 1, features a Z configuration about the C12—C13 [1.376 (2) Å] bond. The hydroxy and amino groups are syn to the central carbonyl group and each forms a hydrogen bond to close a S(6) ring (Table 1). A result of this feature of the structure is that the central residue is planar; the values of the C10—C9—C11–O2, C9—C11—C12—C13 and C11—C12—C13—N3 torsion angles are 2.5 (2), -177.93 (14) and -0.4 (2) °, respectively. Indeed, the r.m.s. deviation for the non-hydrogen atoms comprising the entire molecule excluding the terminal benzene rings is 0.0495 Å. The benzene and chlorobenzene rings form dihedral angles of 3.02 (4) and 41.59 (5) °, respectively, with the central plane.

The most prominent feature of the crystal packing is the formation of supramolecular chains mediated by C—H···Cl interactions, Table 1. The chains assemble into layers in the bc plane, Fig. 2. The closest interactions between layers stacking along the a direction are weak π–π contacts between centrosymmetrically related chlorobenzene rings [3.8156 (9) Å for symmetry operation: 2 - x, 1 - y, 2 - z].

Experimental

A solution of 4-acetoacetyl-5-hydroxy-3-methyl-1-p-sulfamylphenypyrazole (1.7 g, 0.005 mol) and 4-chloroaniline (0.63 g, 0.005 mole) in ethanol (25 ml) was refluxed for 2 h. The precipitate, obtained from the hot solution, was collected, washed with methanol, and recrystallized from ethanol-benzene as orange crystals; M.pt 505–507 K.

Refinement

Carbon-bound H-atoms were placed in calculated positions [C—H 0.95 to 0.98 Å, Uiso(H) 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation. The hydroxy- and amino- H-atoms were located in a difference Fourier map, and subsequently refined freely.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.

Fig. 2.

Fig. 2.

Assembly of supramolecular chains aligned along the c axis in (I) mediated by C—H···Cl interactions shown as orange dashed lines.

Crystal data

C20H18ClN3O2 F(000) = 768
Mr = 367.82 Dx = 1.416 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 4068 reflections
a = 10.7782 (3) Å θ = 2.5–29.3°
b = 12.6349 (4) Å µ = 0.24 mm1
c = 12.9071 (4) Å T = 100 K
β = 100.956 (3)° Block, orange
V = 1725.67 (9) Å3 0.30 × 0.25 × 0.20 mm
Z = 4

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector 3860 independent reflections
Radiation source: SuperNova (Mo) X-ray Source 3199 reflections with I > 2σ(I)
Mirror Rint = 0.025
Detector resolution: 10.4041 pixels mm-1 θmax = 27.5°, θmin = 2.5°
ω scans h = −13→11
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) k = −13→16
Tmin = 0.931, Tmax = 0.953 l = −15→16
8785 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103 H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0495P)2 + 0.5858P] where P = (Fo2 + 2Fc2)/3
3860 reflections (Δ/σ)max < 0.001
245 parameters Δρmax = 0.27 e Å3
0 restraints Δρmin = −0.30 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.91036 (4) 0.59737 (3) 1.20821 (3) 0.02517 (13)
O1 0.69340 (10) 0.75724 (9) 0.38953 (9) 0.0208 (3)
O2 0.73186 (10) 0.65748 (9) 0.56249 (9) 0.0216 (3)
N1 0.59886 (11) 0.64664 (11) 0.24798 (10) 0.0184 (3)
N2 0.56236 (12) 0.54063 (11) 0.23365 (10) 0.0201 (3)
N3 0.77747 (12) 0.55053 (12) 0.74398 (11) 0.0200 (3)
C1 0.57853 (13) 0.71508 (14) 0.15919 (12) 0.0195 (3)
C2 0.60600 (15) 0.82241 (14) 0.17012 (13) 0.0238 (4)
H2 0.6377 0.8518 0.2377 0.029*
C3 0.58657 (16) 0.88614 (15) 0.08098 (14) 0.0290 (4)
H3A 0.6056 0.9595 0.0878 0.035*
C4 0.53986 (16) 0.84422 (16) −0.01787 (14) 0.0291 (4)
H4 0.5276 0.8885 −0.0785 0.035*
C5 0.51121 (15) 0.73772 (16) −0.02783 (13) 0.0282 (4)
H5 0.4780 0.7090 −0.0954 0.034*
C6 0.53058 (14) 0.67263 (15) 0.06000 (13) 0.0236 (4)
H6 0.5113 0.5993 0.0527 0.028*
C7 0.56011 (16) 0.38241 (13) 0.33884 (14) 0.0241 (4)
H7A 0.5145 0.3555 0.2710 0.036*
H7B 0.5070 0.3749 0.3922 0.036*
H7C 0.6383 0.3420 0.3606 0.036*
C8 0.59131 (13) 0.49623 (13) 0.32786 (12) 0.0193 (3)
C9 0.64770 (14) 0.57033 (13) 0.40580 (12) 0.0185 (3)
C10 0.64989 (13) 0.66471 (13) 0.35046 (12) 0.0175 (3)
C11 0.69441 (14) 0.56817 (13) 0.51866 (12) 0.0189 (3)
C12 0.69884 (14) 0.47308 (13) 0.57726 (13) 0.0210 (3)
H12 0.6726 0.4100 0.5393 0.025*
C13 0.73809 (14) 0.46454 (13) 0.68479 (13) 0.0196 (3)
C14 0.74065 (15) 0.35747 (13) 0.73563 (13) 0.0223 (4)
H14A 0.7539 0.3030 0.6848 0.033*
H14B 0.6601 0.3448 0.7581 0.033*
H14C 0.8097 0.3548 0.7971 0.033*
C15 0.80969 (14) 0.55777 (13) 0.85538 (12) 0.0187 (3)
C16 0.73868 (14) 0.50806 (14) 0.92039 (13) 0.0223 (4)
H16 0.6675 0.4665 0.8902 0.027*
C17 0.77113 (14) 0.51871 (14) 1.02897 (13) 0.0220 (4)
H17 0.7244 0.4827 1.0736 0.026*
C18 0.87226 (14) 0.58229 (13) 1.07155 (12) 0.0192 (3)
C19 0.94267 (14) 0.63411 (13) 1.00821 (13) 0.0199 (3)
H19 1.0115 0.6781 1.0386 0.024*
C20 0.91164 (14) 0.62108 (13) 0.89951 (13) 0.0192 (3)
H20 0.9601 0.6555 0.8552 0.023*
H1 0.721 (3) 0.739 (2) 0.462 (2) 0.077 (9)*
H3 0.7859 (18) 0.6100 (17) 0.7060 (17) 0.035 (6)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0307 (2) 0.0284 (2) 0.0149 (2) 0.00130 (16) 0.00068 (15) −0.00084 (17)
O1 0.0259 (6) 0.0178 (6) 0.0170 (6) −0.0017 (4) 0.0000 (4) −0.0009 (5)
O2 0.0283 (6) 0.0188 (6) 0.0167 (6) −0.0025 (5) 0.0019 (4) −0.0017 (5)
N1 0.0190 (6) 0.0191 (7) 0.0162 (7) −0.0017 (5) 0.0013 (5) −0.0003 (6)
N2 0.0225 (7) 0.0184 (7) 0.0186 (7) −0.0019 (5) 0.0019 (5) −0.0015 (6)
N3 0.0245 (7) 0.0193 (7) 0.0150 (7) −0.0012 (5) 0.0009 (5) 0.0018 (6)
C1 0.0151 (7) 0.0269 (9) 0.0164 (8) 0.0016 (6) 0.0031 (6) 0.0032 (7)
C2 0.0229 (8) 0.0279 (10) 0.0200 (8) −0.0024 (7) 0.0029 (6) 0.0012 (7)
C3 0.0313 (9) 0.0291 (10) 0.0264 (9) −0.0025 (7) 0.0051 (7) 0.0066 (8)
C4 0.0290 (9) 0.0385 (11) 0.0195 (9) 0.0003 (8) 0.0039 (7) 0.0096 (8)
C5 0.0255 (8) 0.0433 (12) 0.0152 (8) 0.0010 (8) 0.0021 (6) 0.0013 (8)
C6 0.0226 (8) 0.0293 (10) 0.0187 (8) −0.0006 (7) 0.0037 (6) −0.0018 (7)
C7 0.0285 (8) 0.0201 (9) 0.0226 (9) −0.0031 (7) 0.0019 (7) −0.0038 (7)
C8 0.0187 (7) 0.0207 (9) 0.0185 (8) 0.0010 (6) 0.0033 (6) −0.0015 (7)
C9 0.0195 (7) 0.0190 (8) 0.0169 (8) 0.0004 (6) 0.0030 (6) −0.0008 (7)
C10 0.0152 (7) 0.0204 (8) 0.0167 (8) 0.0003 (6) 0.0023 (6) −0.0022 (7)
C11 0.0187 (7) 0.0215 (8) 0.0166 (8) 0.0008 (6) 0.0043 (6) −0.0016 (7)
C12 0.0236 (8) 0.0200 (9) 0.0190 (8) 0.0001 (6) 0.0032 (6) −0.0017 (7)
C13 0.0173 (7) 0.0202 (8) 0.0214 (8) 0.0005 (6) 0.0037 (6) −0.0007 (7)
C14 0.0244 (8) 0.0200 (9) 0.0210 (9) −0.0009 (6) 0.0009 (6) 0.0010 (7)
C15 0.0206 (7) 0.0187 (8) 0.0156 (8) 0.0036 (6) 0.0006 (6) −0.0001 (6)
C16 0.0189 (7) 0.0261 (9) 0.0209 (8) −0.0038 (6) 0.0012 (6) −0.0004 (7)
C17 0.0229 (8) 0.0239 (9) 0.0198 (8) 0.0002 (6) 0.0052 (6) 0.0016 (7)
C18 0.0221 (7) 0.0195 (8) 0.0145 (8) 0.0052 (6) −0.0002 (6) 0.0007 (6)
C19 0.0212 (8) 0.0164 (8) 0.0204 (8) 0.0008 (6) 0.0000 (6) −0.0015 (7)
C20 0.0225 (8) 0.0155 (8) 0.0196 (8) 0.0018 (6) 0.0041 (6) 0.0016 (6)

Geometric parameters (Å, °)

Cl1—C18 1.7438 (16) C7—H7A 0.9800
O1—C10 1.3233 (19) C7—H7B 0.9800
O1—H1 0.96 (3) C7—H7C 0.9800
O2—C11 1.2921 (19) C8—C9 1.423 (2)
N1—C10 1.3519 (19) C9—C10 1.392 (2)
N1—N2 1.3984 (19) C9—C11 1.448 (2)
N1—C1 1.419 (2) C11—C12 1.416 (2)
N2—C8 1.321 (2) C12—C13 1.376 (2)
N3—C13 1.349 (2) C12—H12 0.9500
N3—C15 1.417 (2) C13—C14 1.502 (2)
N3—H3 0.91 (2) C14—H14A 0.9800
C1—C2 1.389 (2) C14—H14B 0.9800
C1—C6 1.394 (2) C14—H14C 0.9800
C2—C3 1.387 (2) C15—C20 1.391 (2)
C2—H2 0.9500 C15—C16 1.389 (2)
C3—C4 1.385 (3) C16—C17 1.385 (2)
C3—H3A 0.9500 C16—H16 0.9500
C4—C5 1.381 (3) C17—C18 1.381 (2)
C4—H4 0.9500 C17—H17 0.9500
C5—C6 1.384 (2) C18—C19 1.382 (2)
C5—H5 0.9500 C19—C20 1.389 (2)
C6—H6 0.9500 C19—H19 0.9500
C7—C8 1.490 (2) C20—H20 0.9500
C10—O1—H1 100.3 (17) C8—C9—C11 135.94 (15)
C10—N1—N2 110.06 (13) O1—C10—N1 124.81 (14)
C10—N1—C1 131.22 (14) O1—C10—C9 126.90 (14)
N2—N1—C1 118.72 (13) N1—C10—C9 108.29 (14)
C8—N2—N1 105.88 (12) O2—C11—C12 122.09 (14)
C13—N3—C15 128.07 (15) O2—C11—C9 116.35 (14)
C13—N3—H3 114.3 (13) C12—C11—C9 121.56 (15)
C15—N3—H3 117.6 (13) C13—C12—C11 125.31 (16)
C2—C1—C6 120.24 (15) C13—C12—H12 117.3
C2—C1—N1 121.03 (15) C11—C12—H12 117.3
C6—C1—N1 118.73 (15) N3—C13—C12 120.74 (15)
C1—C2—C3 119.12 (16) N3—C13—C14 120.02 (14)
C1—C2—H2 120.4 C12—C13—C14 119.21 (15)
C3—C2—H2 120.4 C13—C14—H14A 109.5
C4—C3—C2 120.88 (18) C13—C14—H14B 109.5
C4—C3—H3A 119.6 H14A—C14—H14B 109.5
C2—C3—H3A 119.6 C13—C14—H14C 109.5
C5—C4—C3 119.61 (17) H14A—C14—H14C 109.5
C5—C4—H4 120.2 H14B—C14—H14C 109.5
C3—C4—H4 120.2 C20—C15—C16 119.74 (15)
C4—C5—C6 120.43 (17) C20—C15—N3 118.36 (14)
C4—C5—H5 119.8 C16—C15—N3 121.82 (14)
C6—C5—H5 119.8 C17—C16—C15 120.35 (15)
C5—C6—C1 119.71 (17) C17—C16—H16 119.8
C5—C6—H6 120.1 C15—C16—H16 119.8
C1—C6—H6 120.1 C18—C17—C16 119.18 (15)
C8—C7—H7A 109.5 C18—C17—H17 120.4
C8—C7—H7B 109.5 C16—C17—H17 120.4
H7A—C7—H7B 109.5 C19—C18—C17 121.39 (15)
C8—C7—H7C 109.5 C19—C18—Cl1 119.77 (12)
H7A—C7—H7C 109.5 C17—C18—Cl1 118.84 (13)
H7B—C7—H7C 109.5 C18—C19—C20 119.19 (15)
N2—C8—C9 111.44 (14) C18—C19—H19 120.4
N2—C8—C7 118.63 (14) C20—C19—H19 120.4
C9—C8—C7 129.91 (15) C19—C20—C15 120.12 (15)
C10—C9—C8 104.32 (14) C19—C20—H20 119.9
C10—C9—C11 119.70 (15) C15—C20—H20 119.9
C10—N1—N2—C8 0.30 (16) C11—C9—C10—O1 1.3 (2)
C1—N1—N2—C8 −179.71 (12) C8—C9—C10—N1 −0.15 (16)
C10—N1—C1—C2 −3.9 (2) C11—C9—C10—N1 −178.50 (13)
N2—N1—C1—C2 176.08 (13) C10—C9—C11—O2 2.5 (2)
C10—N1—C1—C6 175.87 (14) C8—C9—C11—O2 −175.18 (16)
N2—N1—C1—C6 −4.1 (2) C10—C9—C11—C12 −177.32 (14)
C6—C1—C2—C3 −0.8 (2) C8—C9—C11—C12 5.0 (3)
N1—C1—C2—C3 178.97 (14) O2—C11—C12—C13 2.2 (2)
C1—C2—C3—C4 0.3 (2) C9—C11—C12—C13 −177.93 (14)
C2—C3—C4—C5 0.5 (3) C15—N3—C13—C12 173.70 (14)
C3—C4—C5—C6 −0.9 (3) C15—N3—C13—C14 −8.2 (2)
C4—C5—C6—C1 0.4 (2) C11—C12—C13—N3 −0.4 (2)
C2—C1—C6—C5 0.4 (2) C11—C12—C13—C14 −178.47 (14)
N1—C1—C6—C5 −179.35 (14) C13—N3—C15—C20 141.37 (16)
N1—N2—C8—C9 −0.40 (16) C13—N3—C15—C16 −42.0 (2)
N1—N2—C8—C7 178.35 (13) C20—C15—C16—C17 −1.9 (2)
N2—C8—C9—C10 0.35 (17) N3—C15—C16—C17 −178.53 (15)
C7—C8—C9—C10 −178.22 (15) C15—C16—C17—C18 2.2 (2)
N2—C8—C9—C11 178.29 (16) C16—C17—C18—C19 −1.0 (2)
C7—C8—C9—C11 −0.3 (3) C16—C17—C18—Cl1 178.69 (12)
N2—N1—C10—O1 −179.86 (13) C17—C18—C19—C20 −0.6 (2)
C1—N1—C10—O1 0.1 (2) Cl1—C18—C19—C20 179.74 (12)
N2—N1—C10—C9 −0.08 (16) C18—C19—C20—C15 0.9 (2)
C1—N1—C10—C9 179.92 (14) C16—C15—C20—C19 0.3 (2)
C8—C9—C10—O1 179.62 (14) N3—C15—C20—C19 177.05 (14)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1···O2 0.96 (3) 1.64 (3) 2.5283 (16) 153 (3)
N3—H3···O2 0.91 (2) 1.93 (2) 2.6678 (18) 136.9 (18)
C4—H4···Cl1i 0.95 2.81 3.6217 (18) 144

Symmetry codes: (i) x−1/2, −y+3/2, z−3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5069).

References

  1. Agilent (2010). CrysAlis PRO Agilent Technologies, Yarnton, England.
  2. Bendaas, A., Hamdi, M. & Sellier, N. (1999). J. Heterocycl. Chem 36, 1291–1294.
  3. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  4. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  5. Gelin, S., Chantegrel, B. & Nadi, A. I. (1983). J. Org. Chem. 48, 4078–4082.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811029473/hg5069sup1.cif

e-67-o2157-sup1.cif (20.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811029473/hg5069Isup2.hkl

e-67-o2157-Isup2.hkl (189.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811029473/hg5069Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES