Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jul 30;67(Pt 8):o2160. doi: 10.1107/S1600536811029795

N-(4-Chloro­phen­yl)-2,4-dimethyl­benzene­sulfonamide

K Shakuntala a, Sabine Foro b, B Thimme Gowda a,*
PMCID: PMC3213596  PMID: 22091173

Abstract

Mol­ecules of the title compound, C14H14ClNO2S, are bent at the S atom with a C—SO2—NH—C torsion angle of 57.7 (2)°. The benzene rings are rotated relative to each other by 68.1 (1)°. In the crystal, N—H⋯O(S) hydrogen bonds pack the mol­ecules into infinite chains parallel to the b axis.

Related literature

For the hydrogen-bonding preferences of sulfonamides, see: Adsmond & Grant (2001). For studies on the effects of substituents on the structures and other aspects of N-(ar­yl)-amides, see: Arjunan et al. (2004); Gowda et al. (1999); for N-(ar­yl)-methane­sulfonamides, see: Gowda et al. (2007); and for N-(ar­yl)-aryl­sulfonamides, see: Gelbrich et al. (2007); Gowda et al. (2010); Perlovich et al. (2006); Shakuntala et al. (2011). For the preparation of the title compound, see: Savitha & Gowda (2006).graphic file with name e-67-o2160-scheme1.jpg

Experimental

Crystal data

  • C14H14ClNO2S

  • M r = 295.77

  • Monoclinic, Inline graphic

  • a = 9.1093 (8) Å

  • b = 9.9106 (9) Å

  • c = 16.142 (1) Å

  • β = 96.505 (9)°

  • V = 1447.9 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.41 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) T min = 0.888, T max = 0.961

  • 5342 measured reflections

  • 2934 independent reflections

  • 2219 reflections with I > 2σ(I)

  • R int = 0.013

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049

  • wR(F 2) = 0.121

  • S = 1.08

  • 2934 reflections

  • 177 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.32 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811029795/bt5589sup1.cif

e-67-o2160-sup1.cif (17.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811029795/bt5589Isup2.hkl

e-67-o2160-Isup2.hkl (144KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811029795/bt5589Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.83 (2) 2.08 (2) 2.891 (4) 166 (3)

Symmetry code: (i) Inline graphic.

Acknowledgments

KS thanks the University Grants Commission, Government of India, New Delhi, for the award of a research fellowship under its faculty improvement programme.

supplementary crystallographic information

Comment

The amide and sulfonamide moieties are the constituents of many biologically significant compounds. The hydrogen bonding preferences of sulfonamides have been investigated (Adsmond & Grant, 2001). As part of our work on the substituent effects on the structures and other aspects of N-(aryl)-amides (Arjunan et al., 2004; Gowda et al., 1999), N-(aryl)-methanesulfonamides (Gowda et al., 2007) and N-(aryl)-arylsulfonamides (Gowda et al., 2010; Shakuntala et al., 2011), in the present work, the crystal structure of N-(4-chlorophenyl)-2,4-dimethylbenzenesulfonamide (I) has been determined (Fig. 1). The N—C bond in the C—SO2—NH—C segment has gauche torsions with respect to the S═O bonds. The molecule is bent at the S atom with the C1—SO2—NH—C7 torsion angle of 57.7 (2)°, compared to the values of -54.9 (2)° in N-(2-chlorophenyl)- 2,4-dimethylbenzenesulfonamide (II)(Gowda et al., 2010) and 44.6 (2)° in N-(3-chlorophenyl)-2,4-dimethylbenzenesulfonamide (III) (Shakuntala et al., 2011).

The two benzene rings in (I) are tilted relative to each other by 68.1 (1)°, compared to the value of 66.2 (1)° (II) and 75.7 (1)° in (III). The other bond parameters in (I) are similar to those observed in (II), (III) and other aryl sulfonamides (Perlovich et al., 2006; Gelbrich et al., 2007).

The crystal packing of molecules in (I) via N—H···O(S) hydrogen bonds (Table 1) is shown in Fig.2.

Experimental

The solution of 1,3-xylene (1,3-dimethylbenzene) (10 ml) in chloroform (40 ml) was treated dropwise with chlorosulfonic acid (25 ml) at 0 ° C. After the initial evolution of hydrogen chloride subsided, the reaction mixture was brought to room temperature and poured into crushed ice in a beaker. The chloroform layer was separated, washed with cold water and allowed to evaporate slowly. The residual 2,4-dimethylbenzenesulfonylchloride was treated with 4-chloroaniline in the stoichiometric ratio and boiled for ten minutes. The reaction mixture was then cooled to room temperature and added to ice cold water (100 cc). The resultant solid N-(4-chlorophenyl)-2,4-dimethylbenzenesulfonamide was filtered under suction and washed thoroughly with cold water. It was then recrystallized to constant melting point from dilute ethanol. The purity of the compound was checked and characterized by recording its infrared and NMR spectra (Savitha & Gowda, 2006).

The prism like colourless single crystals used in X-ray diffraction studies were grown in ethanolic solution by a slow evaporation at room temperature.

Refinement

The H atom of the NH group was located in a difference map and later restrained to the distance N—H = 0.86 (2) Å. The other H atoms were positioned with idealized geometry using a riding model with the aromatic C—H = 0.93Å and methyl C—H = 0.96 Å and with isotropic displacement parameters set at 1.2Ueq(C-aromatic, N) and 1.5Ueq(C-methyl).

Figures

Fig. 1.

Fig. 1.

Molecular structure of (I), showing the atom labelling scheme and displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Molecular packing of (I) with hydrogen bonding shown as dashed lines.

Crystal data

C14H14ClNO2S F(000) = 616
Mr = 295.77 Dx = 1.357 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2044 reflections
a = 9.1093 (8) Å θ = 2.5–27.7°
b = 9.9106 (9) Å µ = 0.41 mm1
c = 16.142 (1) Å T = 293 K
β = 96.505 (9)° Prism, colourless
V = 1447.9 (2) Å3 0.30 × 0.20 × 0.10 mm
Z = 4

Data collection

Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector 2934 independent reflections
Radiation source: fine-focus sealed tube 2219 reflections with I > 2σ(I)
graphite Rint = 0.013
Rotation method data acquisition using ω and φ scans θmax = 26.4°, θmin = 2.5°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) h = −7→11
Tmin = 0.888, Tmax = 0.961 k = −8→12
5342 measured reflections l = −20→19

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121 H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0421P)2 + 0.9349P] where P = (Fo2 + 2Fc2)/3
2934 reflections (Δ/σ)max = 0.002
177 parameters Δρmax = 0.28 e Å3
1 restraint Δρmin = −0.32 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.6057 (3) 0.0526 (2) 0.39055 (15) 0.0469 (6)
C2 0.6430 (3) 0.1450 (3) 0.45485 (16) 0.0542 (6)
C3 0.7412 (3) 0.1003 (3) 0.52140 (17) 0.0641 (7)
H3 0.7676 0.1602 0.5649 0.077*
C4 0.8019 (3) −0.0276 (3) 0.52681 (17) 0.0618 (7)
C5 0.7618 (3) −0.1160 (3) 0.46227 (19) 0.0643 (7)
H5 0.8004 −0.2029 0.4644 0.077*
C6 0.6650 (3) −0.0771 (3) 0.39452 (18) 0.0575 (7)
H6 0.6392 −0.1377 0.3513 0.069*
C7 0.7258 (3) 0.1399 (2) 0.21393 (14) 0.0458 (6)
C8 0.7325 (4) 0.0198 (3) 0.1716 (2) 0.0709 (8)
H8 0.6500 −0.0361 0.1639 0.085*
C9 0.8622 (4) −0.0178 (3) 0.1404 (2) 0.0817 (10)
H9 0.8674 −0.0994 0.1125 0.098*
C10 0.9820 (4) 0.0654 (3) 0.15092 (19) 0.0696 (8)
C11 0.9774 (3) 0.1839 (3) 0.19339 (18) 0.0685 (8)
H11 1.0600 0.2396 0.2006 0.082*
C12 0.8494 (3) 0.2206 (3) 0.22558 (16) 0.0587 (7)
H12 0.8465 0.3006 0.2554 0.070*
C13 0.5833 (4) 0.2867 (3) 0.4561 (2) 0.0760 (9)
H13A 0.4795 0.2838 0.4616 0.091*
H13B 0.5985 0.3316 0.4050 0.091*
H13C 0.6338 0.3351 0.5023 0.091*
C14 0.9094 (4) −0.0683 (4) 0.6002 (2) 0.0841 (10)
H14A 0.8563 −0.1060 0.6428 0.101*
H14B 0.9637 0.0094 0.6218 0.101*
H14C 0.9766 −0.1344 0.5829 0.101*
N1 0.5919 (2) 0.1852 (2) 0.24225 (13) 0.0504 (5)
H1N 0.587 (3) 0.2672 (18) 0.2515 (16) 0.061*
O1 0.3758 (2) 0.18577 (19) 0.31728 (13) 0.0667 (5)
O2 0.4524 (2) −0.02597 (17) 0.25512 (12) 0.0638 (5)
Cl1 1.14202 (12) 0.01793 (12) 0.10872 (7) 0.1119 (4)
S1 0.49106 (7) 0.09643 (6) 0.29924 (4) 0.04969 (19)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0499 (14) 0.0414 (12) 0.0497 (14) −0.0080 (10) 0.0070 (11) 0.0040 (11)
C2 0.0632 (16) 0.0511 (14) 0.0504 (14) −0.0098 (12) 0.0154 (12) −0.0028 (12)
C3 0.0742 (18) 0.073 (2) 0.0456 (14) −0.0171 (16) 0.0078 (13) −0.0035 (14)
C4 0.0549 (16) 0.078 (2) 0.0523 (15) −0.0122 (15) 0.0074 (12) 0.0172 (15)
C5 0.0646 (17) 0.0546 (16) 0.0729 (19) 0.0027 (14) 0.0044 (14) 0.0148 (15)
C6 0.0664 (17) 0.0424 (14) 0.0621 (16) −0.0032 (12) 0.0006 (13) 0.0024 (12)
C7 0.0602 (15) 0.0353 (12) 0.0405 (12) 0.0029 (11) 0.0000 (11) 0.0061 (10)
C8 0.079 (2) 0.0476 (16) 0.088 (2) −0.0072 (14) 0.0195 (17) −0.0116 (15)
C9 0.104 (3) 0.0538 (18) 0.092 (2) 0.0131 (18) 0.032 (2) −0.0058 (17)
C10 0.0696 (19) 0.076 (2) 0.0644 (18) 0.0251 (17) 0.0137 (15) 0.0246 (16)
C11 0.0613 (18) 0.081 (2) 0.0620 (17) −0.0025 (16) 0.0021 (14) 0.0097 (16)
C12 0.0706 (18) 0.0540 (16) 0.0496 (15) −0.0057 (14) −0.0011 (13) −0.0013 (12)
C13 0.100 (2) 0.0541 (18) 0.074 (2) −0.0043 (16) 0.0123 (18) −0.0156 (15)
C14 0.0680 (19) 0.114 (3) 0.0679 (19) −0.0132 (19) −0.0022 (16) 0.0274 (19)
N1 0.0649 (13) 0.0290 (10) 0.0575 (13) 0.0021 (10) 0.0074 (10) 0.0023 (9)
O1 0.0522 (11) 0.0563 (11) 0.0919 (14) 0.0044 (9) 0.0100 (10) 0.0039 (10)
O2 0.0695 (12) 0.0422 (10) 0.0751 (13) −0.0126 (9) −0.0118 (10) −0.0014 (9)
Cl1 0.0955 (7) 0.1262 (9) 0.1214 (8) 0.0489 (6) 0.0447 (6) 0.0358 (7)
S1 0.0499 (3) 0.0361 (3) 0.0616 (4) −0.0040 (3) −0.0001 (3) 0.0016 (3)

Geometric parameters (Å, °)

C1—C6 1.392 (4) C9—C10 1.363 (5)
C1—C2 1.397 (4) C9—H9 0.9300
C1—S1 1.762 (3) C10—C11 1.363 (5)
C2—C3 1.390 (4) C10—Cl1 1.742 (3)
C2—C13 1.508 (4) C11—C12 1.378 (4)
C3—C4 1.382 (4) C11—H11 0.9300
C3—H3 0.9300 C12—H12 0.9300
C4—C5 1.378 (4) C13—H13A 0.9600
C4—C14 1.504 (4) C13—H13B 0.9600
C5—C6 1.380 (4) C13—H13C 0.9600
C5—H5 0.9300 C14—H14A 0.9600
C6—H6 0.9300 C14—H14B 0.9600
C7—C12 1.377 (4) C14—H14C 0.9600
C7—C8 1.377 (4) N1—S1 1.630 (2)
C7—N1 1.423 (3) N1—H1N 0.828 (17)
C8—C9 1.387 (4) O1—S1 1.429 (2)
C8—H8 0.9300 O2—S1 1.430 (2)
C6—C1—C2 120.7 (2) C11—C10—Cl1 120.3 (3)
C6—C1—S1 117.1 (2) C10—C11—C12 119.5 (3)
C2—C1—S1 122.1 (2) C10—C11—H11 120.2
C3—C2—C1 116.5 (3) C12—C11—H11 120.2
C3—C2—C13 119.2 (3) C7—C12—C11 120.6 (3)
C1—C2—C13 124.2 (3) C7—C12—H12 119.7
C4—C3—C2 124.0 (3) C11—C12—H12 119.7
C4—C3—H3 118.0 C2—C13—H13A 109.5
C2—C3—H3 118.0 C2—C13—H13B 109.5
C5—C4—C3 117.7 (3) H13A—C13—H13B 109.5
C5—C4—C14 121.2 (3) C2—C13—H13C 109.5
C3—C4—C14 121.1 (3) H13A—C13—H13C 109.5
C4—C5—C6 120.8 (3) H13B—C13—H13C 109.5
C4—C5—H5 119.6 C4—C14—H14A 109.5
C6—C5—H5 119.6 C4—C14—H14B 109.5
C5—C6—C1 120.3 (3) H14A—C14—H14B 109.5
C5—C6—H6 119.9 C4—C14—H14C 109.5
C1—C6—H6 119.9 H14A—C14—H14C 109.5
C12—C7—C8 119.2 (3) H14B—C14—H14C 109.5
C12—C7—N1 119.4 (2) C7—N1—S1 124.70 (17)
C8—C7—N1 121.4 (2) C7—N1—H1N 115.6 (19)
C7—C8—C9 120.0 (3) S1—N1—H1N 112.6 (19)
C7—C8—H8 120.0 O1—S1—O2 118.81 (12)
C9—C8—H8 120.0 O1—S1—N1 104.76 (12)
C10—C9—C8 119.7 (3) O2—S1—N1 107.43 (12)
C10—C9—H9 120.2 O1—S1—C1 111.24 (12)
C8—C9—H9 120.2 O2—S1—C1 107.25 (12)
C9—C10—C11 120.9 (3) N1—S1—C1 106.67 (11)
C9—C10—Cl1 118.8 (3)
C6—C1—C2—C3 0.2 (4) C8—C9—C10—Cl1 −178.3 (3)
S1—C1—C2—C3 −176.34 (19) C9—C10—C11—C12 −0.5 (4)
C6—C1—C2—C13 −179.5 (3) Cl1—C10—C11—C12 179.3 (2)
S1—C1—C2—C13 4.0 (4) C8—C7—C12—C11 1.8 (4)
C1—C2—C3—C4 0.0 (4) N1—C7—C12—C11 −175.2 (2)
C13—C2—C3—C4 179.7 (3) C10—C11—C12—C7 −1.2 (4)
C2—C3—C4—C5 −0.3 (4) C12—C7—N1—S1 −130.2 (2)
C2—C3—C4—C14 179.1 (3) C8—C7—N1—S1 52.9 (3)
C3—C4—C5—C6 0.4 (4) C7—N1—S1—O1 175.7 (2)
C14—C4—C5—C6 −178.9 (3) C7—N1—S1—O2 −57.0 (2)
C4—C5—C6—C1 −0.3 (4) C7—N1—S1—C1 57.7 (2)
C2—C1—C6—C5 0.0 (4) C6—C1—S1—O1 146.0 (2)
S1—C1—C6—C5 176.6 (2) C2—C1—S1—O1 −37.4 (2)
C12—C7—C8—C9 −0.8 (4) C6—C1—S1—O2 14.5 (2)
N1—C7—C8—C9 176.1 (3) C2—C1—S1—O2 −168.8 (2)
C7—C8—C9—C10 −0.9 (5) C6—C1—S1—N1 −100.3 (2)
C8—C9—C10—C11 1.5 (5) C2—C1—S1—N1 76.3 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O2i 0.83 (2) 2.08 (2) 2.891 (4) 166 (3)

Symmetry codes: (i) −x+1, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5589).

References

  1. Adsmond, D. A. & Grant, D. J. W. (2001). J. Pharm. Sci. 90, 2058–2077. [DOI] [PubMed]
  2. Arjunan, V., Mohan, S., Subramanian, S. & Gowda, B. T. (2004). Spectrochim. Acta Part A, 60A, 1141–1159. [DOI] [PubMed]
  3. Gelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621–632. [DOI] [PubMed]
  4. Gowda, B. T., Bhat, D. K., Fuess, H. & Weiss, A. (1999). Z. Naturforsch. Teil A, 54, 261–267.
  5. Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2337.
  6. Gowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2010). Acta Cryst. E66, o1282. [DOI] [PMC free article] [PubMed]
  7. Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
  8. Perlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780–o782.
  9. Savitha, M. B. & Gowda, B. T. (2006). Z. Naturforsch. Teil A, 60, 600–606.
  10. Shakuntala, K., Foro, S. & Gowda, B. T. (2011). Acta Cryst. E67, o2178. [DOI] [PMC free article] [PubMed]
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811029795/bt5589sup1.cif

e-67-o2160-sup1.cif (17.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811029795/bt5589Isup2.hkl

e-67-o2160-Isup2.hkl (144KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811029795/bt5589Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES