Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jul 30;67(Pt 8):o2166. doi: 10.1107/S1600536811029242

3-Amino-N′-(2-oxoindolin-3-yl­idene)benzohydrazide

Rifat Ara Jamal a,*, Uzma Ashiq a, Sammer Yousuf b, Qurrat ul Ain a
PMCID: PMC3213601  PMID: 22091178

Abstract

The title compound, C15H12N4O2, contains two substituted benzohydrazide and indole rings linked via a C=N double bond. The dihedral angle between the benzene ring and the indole ring system is 11.38 (10)°. The mol­ecular structure is stabilized by an intra­molecular N—H⋯O hydrogen bond, forming a six-membered ring. The crystal structure is consolidated by inter­molecular N—H⋯O and C—H⋯O inter­actions, which result in sheets.

Related literature

For the biological activity of related compounds, see: Ashiq et al. (2008); Maqsood et al. (2006); Sarangapani & Reddy (1994). For related structures, see: Bai et al. (2006); Yang & Pan (2004).graphic file with name e-67-o2166-scheme1.jpg

Experimental

Crystal data

  • C15H12N4O2

  • M r = 280.29

  • Monoclinic, Inline graphic

  • a = 8.8036 (8) Å

  • b = 8.9040 (7) Å

  • c = 17.0732 (14) Å

  • β = 92.335 (2)°

  • V = 1337.21 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 273 K

  • 0.17 × 0.17 × 0.12 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000) T min = 0.984, T max = 0.989

  • 7637 measured reflections

  • 2491 independent reflections

  • 1551 reflections with I > 2σ(I)

  • R int = 0.047

Refinement

  • R[F 2 > 2σ(F 2)] = 0.052

  • wR(F 2) = 0.122

  • S = 0.99

  • 2491 reflections

  • 198 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811029242/pv2431sup1.cif

e-67-o2166-sup1.cif (18KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811029242/pv2431Isup2.hkl

e-67-o2166-Isup2.hkl (122.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811029242/pv2431Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2i 0.86 2.02 2.785 (2) 148
N3—H3A⋯O1 0.86 2.09 2.757 (2) 133
N4—H4C⋯N2ii 0.86 (2) 2.61 (2) 3.423 (3) 158 (2)
C12—H12A⋯O1iii 0.93 2.59 3.424 (3) 149

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors are thankful to the Higher Education Commission (HEC) Pakistan for financial support under the National Research Grants Program for Universities (grant No. 20–1862/R&D/10).

supplementary crystallographic information

Comment

Compounds containing hydrazide moiety have been revealed to exhibit a wide variety of interesting biological properties (Ashiq et al. 2008; Maqsood et al. 2006). In a quest to expand and further explore the biological significance of hydrazides, we have undertken a task to synthesize new Schiff bases of isatin with hydrazides. Isatins are very important compounds due to their antifungal properties (Sarangapani & Reddy, 1994). In this article we report the synthesis and crystal structure of the title compound.

The title molecule (Fig. 1) consists of substituted benzohydrazide and indole rings linked by C═N bond. The dihedral angle between the two substituted benzene (C10—C15) and indole ring (N1/C1—C8) is 11.38 (10)°. The bond lengths and angles are in normal range as in other structurally related compounds (Bai et al. 2006; Yang & Pan, 2004). The geometry of the molecule is stabilized by N3—H3A···O1 intramolecular hydrogen bond resulting in a six membered ring. In the crystal structure, the molecules are linked to form two-dimensional sheets via N1—H1A···O2, N4—H4C···N2 and C12—H12A···O1 intermolecular hydrogen bonds (Tab. 1 & Fig. 2).

Experimental

To a solution of 2,3-indolinedione (10 mmol, 1.47 g) in 15 ml of ethanol with a few drops of glacial acetic acid and 3-aminobenzohydrazide (10 mmol, 1.51 g) in 15 ml ethanol were added. The mixture was refluxed for 2 h and a solid was obtained upon removal of the solvent by rotary evaporation. The resulting solid was washed with ethanol to afford the title compound (yield 75%). The crystals of the title compound suitable for XRD analysis were grown from a mixture of ethanol and methanol (1:1) by slow evaporation at room temperature.

Refinement

H atoms on the C atoms and N1 and N3 were positioned geomatrically with C–H = 0.93 and N–H = 0.86 Å and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C/N). The H atoms on N4 were located from a difference Fourier map and refined isotropically.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title molecule with displacement ellipsoids drawn at 50% probability level. The dashed lines indicate intramolecular hydrogen bond.

Fig. 2.

Fig. 2.

The crystal packing of the title compound.Hydrogen atoms not involved in hydrogen bonding have been excluded for clarity.

Crystal data

C15H12N4O2 F(000) = 584
Mr = 280.29 Dx = 1.392 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 1161 reflections
a = 8.8036 (8) Å θ = 2.4–27.8°
b = 8.9040 (7) Å µ = 0.10 mm1
c = 17.0732 (14) Å T = 273 K
β = 92.335 (2)° Block, colorless
V = 1337.21 (19) Å3 0.17 × 0.17 × 0.12 mm
Z = 4

Data collection

Bruker SMART APEX CCD area-detector diffractometer 2491 independent reflections
Radiation source: fine-focus sealed tube 1551 reflections with I > 2σ(I)
graphite Rint = 0.047
ω scans θmax = 25.5°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Bruker, 2000) h = −10→10
Tmin = 0.984, Tmax = 0.989 k = −10→10
7637 measured reflections l = −20→20

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122 H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.0584P)2] where P = (Fo2 + 2Fc2)/3
2491 reflections (Δ/σ)max < 0.001
198 parameters Δρmax = 0.18 e Å3
1 restraint Δρmin = −0.17 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.66942 (18) 0.35101 (18) −0.07613 (8) 0.0531 (5)
O2 0.53184 (19) 0.37905 (18) 0.20442 (8) 0.0568 (5)
N1 0.5172 (2) 0.1671 (2) −0.13475 (10) 0.0470 (5)
H1A 0.5578 0.1631 −0.1797 0.056*
N2 0.4730 (2) 0.27880 (19) 0.06115 (9) 0.0407 (5)
N3 0.5848 (2) 0.38136 (19) 0.07676 (9) 0.0415 (5)
H3A 0.6377 0.4169 0.0398 0.050*
N4 0.8354 (3) 0.8078 (3) 0.32398 (15) 0.0676 (7)
C1 0.2412 (3) 0.0351 (3) −0.00233 (13) 0.0488 (6)
H1B 0.2175 0.0545 0.0493 0.059*
C2 0.1601 (3) −0.0703 (3) −0.04635 (15) 0.0557 (7)
H2A 0.0815 −0.1229 −0.0241 0.067*
C3 0.1950 (3) −0.0980 (3) −0.12350 (14) 0.0569 (7)
H3B 0.1379 −0.1682 −0.1524 0.068*
C4 0.3119 (3) −0.0245 (3) −0.15845 (13) 0.0523 (7)
H4A 0.3354 −0.0442 −0.2101 0.063*
C5 0.3923 (2) 0.0790 (2) −0.11405 (12) 0.0417 (6)
C6 0.5659 (3) 0.2585 (3) −0.07583 (12) 0.0409 (6)
C7 0.4654 (2) 0.2238 (2) −0.00862 (11) 0.0374 (5)
C8 0.3583 (2) 0.1110 (2) −0.03664 (12) 0.0391 (5)
C9 0.6110 (2) 0.4264 (2) 0.15255 (12) 0.0406 (6)
C10 0.7362 (2) 0.5353 (2) 0.16743 (12) 0.0400 (6)
C11 0.8540 (3) 0.5576 (3) 0.11661 (13) 0.0518 (6)
H11A 0.8582 0.5027 0.0704 0.062*
C12 0.9645 (3) 0.6629 (3) 0.13619 (15) 0.0606 (7)
H12A 1.0442 0.6778 0.1030 0.073*
C13 0.9587 (3) 0.7457 (3) 0.20365 (16) 0.0586 (7)
H13A 1.0342 0.8161 0.2154 0.070*
C14 0.8416 (3) 0.7259 (3) 0.25467 (14) 0.0490 (6)
C15 0.7329 (3) 0.6181 (2) 0.23602 (13) 0.0440 (6)
H15A 0.6555 0.6009 0.2704 0.053*
H4C 0.7478 (19) 0.819 (3) 0.3435 (17) 0.099 (12)*
H4B 0.889 (4) 0.894 (3) 0.3239 (17) 0.101 (11)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0485 (10) 0.0635 (11) 0.0480 (9) −0.0019 (9) 0.0114 (8) 0.0040 (8)
O2 0.0650 (11) 0.0715 (12) 0.0346 (8) −0.0188 (9) 0.0111 (8) −0.0022 (8)
N1 0.0485 (12) 0.0630 (12) 0.0299 (9) 0.0067 (11) 0.0055 (9) 0.0003 (9)
N2 0.0402 (11) 0.0452 (11) 0.0366 (10) 0.0030 (9) 0.0024 (9) 0.0015 (8)
N3 0.0439 (11) 0.0476 (11) 0.0334 (10) −0.0005 (10) 0.0080 (9) 0.0016 (8)
N4 0.0598 (18) 0.0655 (16) 0.0765 (16) −0.0067 (14) −0.0089 (14) −0.0142 (14)
C1 0.0431 (14) 0.0557 (15) 0.0473 (13) 0.0064 (13) 0.0012 (12) 0.0011 (12)
C2 0.0413 (15) 0.0549 (16) 0.0704 (17) 0.0005 (13) −0.0028 (13) 0.0059 (14)
C3 0.0515 (16) 0.0529 (15) 0.0644 (17) 0.0076 (13) −0.0192 (14) −0.0053 (13)
C4 0.0566 (17) 0.0566 (15) 0.0429 (13) 0.0126 (14) −0.0088 (13) −0.0042 (12)
C5 0.0392 (13) 0.0476 (13) 0.0377 (12) 0.0125 (12) −0.0042 (11) 0.0000 (11)
C6 0.0366 (14) 0.0488 (14) 0.0372 (12) 0.0113 (12) 0.0017 (11) 0.0042 (11)
C7 0.0364 (13) 0.0432 (13) 0.0326 (11) 0.0115 (11) 0.0013 (10) 0.0028 (10)
C8 0.0354 (12) 0.0437 (13) 0.0379 (11) 0.0089 (11) −0.0004 (10) 0.0025 (10)
C9 0.0436 (14) 0.0440 (13) 0.0345 (12) 0.0075 (11) 0.0040 (11) 0.0023 (10)
C10 0.0361 (13) 0.0412 (13) 0.0426 (12) 0.0055 (11) 0.0021 (10) 0.0070 (11)
C11 0.0452 (15) 0.0603 (16) 0.0504 (13) 0.0042 (13) 0.0079 (12) 0.0053 (12)
C12 0.0403 (15) 0.0737 (18) 0.0685 (17) −0.0012 (14) 0.0084 (14) 0.0180 (15)
C13 0.0447 (16) 0.0558 (16) 0.0743 (17) −0.0074 (13) −0.0084 (14) 0.0100 (14)
C14 0.0428 (15) 0.0479 (14) 0.0557 (14) 0.0047 (12) −0.0055 (13) 0.0030 (12)
C15 0.0377 (13) 0.0472 (14) 0.0470 (13) 0.0014 (11) −0.0012 (11) 0.0047 (11)

Geometric parameters (Å, °)

O1—C6 1.228 (2) C3—H3B 0.9300
O2—C9 1.224 (2) C4—C5 1.372 (3)
N1—C6 1.351 (3) C4—H4A 0.9300
N1—C5 1.407 (3) C5—C8 1.396 (3)
N1—H1A 0.8600 C6—C7 1.509 (3)
N2—C7 1.287 (2) C7—C8 1.446 (3)
N2—N3 1.361 (2) C9—C10 1.482 (3)
N3—C9 1.365 (2) C10—C15 1.385 (3)
N3—H3A 0.8600 C10—C11 1.393 (3)
N4—C14 1.393 (3) C11—C12 1.382 (3)
N4—H4C 0.858 (10) C11—H11A 0.9300
N4—H4B 0.90 (3) C12—C13 1.370 (3)
C1—C2 1.382 (3) C12—H12A 0.9300
C1—C8 1.383 (3) C13—C14 1.388 (3)
C1—H1B 0.9300 C13—H13A 0.9300
C2—C3 1.387 (3) C14—C15 1.383 (3)
C2—H2A 0.9300 C15—H15A 0.9300
C3—C4 1.376 (3)
C6—N1—C5 112.13 (18) N2—C7—C8 125.39 (19)
C6—N1—H1A 123.9 N2—C7—C6 128.0 (2)
C5—N1—H1A 123.9 C8—C7—C6 106.59 (17)
C7—N2—N3 116.52 (17) C1—C8—C5 119.6 (2)
N2—N3—C9 118.39 (17) C1—C8—C7 133.39 (19)
N2—N3—H3A 120.8 C5—C8—C7 107.01 (18)
C9—N3—H3A 120.8 O2—C9—N3 120.4 (2)
C14—N4—H4C 117 (2) O2—C9—C10 122.86 (19)
C14—N4—H4B 113.9 (19) N3—C9—C10 116.76 (18)
H4C—N4—H4B 113 (3) C15—C10—C11 119.5 (2)
C2—C1—C8 118.6 (2) C15—C10—C9 116.88 (19)
C2—C1—H1B 120.7 C11—C10—C9 123.6 (2)
C8—C1—H1B 120.7 C12—C11—C10 118.7 (2)
C1—C2—C3 120.5 (2) C12—C11—H11A 120.6
C1—C2—H2A 119.7 C10—C11—H11A 120.6
C3—C2—H2A 119.7 C13—C12—C11 121.2 (2)
C4—C3—C2 121.7 (2) C13—C12—H12A 119.4
C4—C3—H3B 119.2 C11—C12—H12A 119.4
C2—C3—H3B 119.2 C12—C13—C14 120.9 (2)
C5—C4—C3 117.3 (2) C12—C13—H13A 119.6
C5—C4—H4A 121.4 C14—C13—H13A 119.6
C3—C4—H4A 121.4 C15—C14—C13 117.9 (2)
C4—C5—C8 122.3 (2) C15—C14—N4 120.5 (2)
C4—C5—N1 128.8 (2) C13—C14—N4 121.5 (2)
C8—C5—N1 108.91 (19) C14—C15—C10 121.7 (2)
O1—C6—N1 127.9 (2) C14—C15—H15A 119.1
O1—C6—C7 126.8 (2) C10—C15—H15A 119.1
N1—C6—C7 105.3 (2)
C7—N2—N3—C9 −170.74 (18) N1—C5—C8—C7 0.4 (2)
C8—C1—C2—C3 −0.5 (3) N2—C7—C8—C1 0.8 (4)
C1—C2—C3—C4 1.1 (4) C6—C7—C8—C1 179.3 (2)
C2—C3—C4—C5 −0.6 (3) N2—C7—C8—C5 −177.82 (19)
C3—C4—C5—C8 −0.4 (3) C6—C7—C8—C5 0.6 (2)
C3—C4—C5—N1 178.9 (2) N2—N3—C9—O2 −2.5 (3)
C6—N1—C5—C4 179.2 (2) N2—N3—C9—C10 178.53 (17)
C6—N1—C5—C8 −1.4 (2) O2—C9—C10—C15 −19.6 (3)
C5—N1—C6—O1 −178.1 (2) N3—C9—C10—C15 159.37 (19)
C5—N1—C6—C7 1.7 (2) O2—C9—C10—C11 160.6 (2)
N3—N2—C7—C8 178.30 (18) N3—C9—C10—C11 −20.5 (3)
N3—N2—C7—C6 0.2 (3) C15—C10—C11—C12 −0.2 (3)
O1—C6—C7—N2 −3.2 (4) C9—C10—C11—C12 179.6 (2)
N1—C6—C7—N2 177.0 (2) C10—C11—C12—C13 −0.7 (4)
O1—C6—C7—C8 178.4 (2) C11—C12—C13—C14 0.2 (4)
N1—C6—C7—C8 −1.4 (2) C12—C13—C14—C15 1.2 (4)
C2—C1—C8—C5 −0.5 (3) C12—C13—C14—N4 179.1 (2)
C2—C1—C8—C7 −179.0 (2) C13—C14—C15—C10 −2.2 (3)
C4—C5—C8—C1 1.0 (3) N4—C14—C15—C10 179.9 (2)
N1—C5—C8—C1 −178.47 (19) C11—C10—C15—C14 1.7 (3)
C4—C5—C8—C7 179.85 (19) C9—C10—C15—C14 −178.15 (19)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1A···O2i 0.86 2.02 2.785 (2) 148
N3—H3A···O1 0.86 2.09 2.757 (2) 133
N4—H4C···N2ii 0.86 (2) 2.61 (2) 3.423 (3) 158 (2)
C12—H12A···O1iii 0.93 2.59 3.424 (3) 149

Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x+1, y+1/2, −z+1/2; (iii) −x+2, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2431).

References

  1. Ashiq, U., Ara, R., Mahroof-Tahir, M., Maqsood, Z. T., Khan, K. M., Khan, S. N., Siddiqui, H. & Choudhary, M. I. (2008). Chem. Biodivers. 5, 82–92. [DOI] [PubMed]
  2. Bai, Z.-C., Li, H., Liu, Y. & Jing, Z.-L. (2006). Acta Cryst. E62, o2295–o2296.
  3. Bruker (2000). SADABS, SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Maqsood, Z. T., Khan, K. M., Ashiq, U., Ara, R., Chohan, Z. H., Mahroof-Tahir, M. & Supuran, C. T. (2006). J. Enz. Inhib. Med. Chem. 21, 37–42. [DOI] [PubMed]
  5. Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
  6. Sarangapani, M. & Reddy, V. M. (1994). Indian J. Pharm. Sci. 56, 174–177.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  9. Yang, J.-G. & Pan, F.-Y. (2004). Acta Cryst. E60, o2009–o2010.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811029242/pv2431sup1.cif

e-67-o2166-sup1.cif (18KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811029242/pv2431Isup2.hkl

e-67-o2166-Isup2.hkl (122.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811029242/pv2431Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES