Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jul 30;67(Pt 8):o2179. doi: 10.1107/S1600536811030029

N,N′-Bis(4-chloro­phenyl­sulfon­yl)­adipamide

Vinola Z Rodrigues a, Sabine Foro b, B Thimme Gowda a,*
PMCID: PMC3213613  PMID: 22091190

Abstract

In the title compound, C18H18Cl2N2O6S2, the asymmetric unit contains half a mol­ecule with a center of symmetry at the mid-point of the central C—C bond. The dihedral angle between the benzene ring and the SO2—NH—C(O) segment in the two halves of the mol­ecule is 83.5 (2)°. In the crystal, N—H⋯O(S) inter­molecular hydrogen bonds link the mol­ecules into infinite chains running along the c axis. The O atom involved in the hydrogen bond has a longer S—O bond than the other O atom bonded to S [1.403 (4) versus 1.361 (4) Å].

Related literature

For hydrogen-bonding preferences of sulfonamides, see; Adsmond & Grant (2001). For our studies on the effects of substituents on the structures of N-(ar­yl)-amides, see: Bhat & Gowda (2000); Gowda et al. (2000, 2007). For those on N-(aryl­sulfon­yl)-amides, see: Rodrigues et al. (2011a,b ). For those on N-(ar­yl)-aryl­sulfonamides, see: Gowda et al. (2005).graphic file with name e-67-o2179-scheme1.jpg

Experimental

Crystal data

  • C18H18Cl2N2O6S2

  • M r = 493.36

  • Triclinic, Inline graphic

  • a = 5.593 (1) Å

  • b = 8.827 (2) Å

  • c = 9.908 (2) Å

  • α = 89.28 (2)°

  • β = 87.75 (2)°

  • γ = 81.16 (1)°

  • V = 482.96 (17) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.60 mm−1

  • T = 293 K

  • 0.12 × 0.08 × 0.04 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) T min = 0.932, T max = 0.977

  • 2942 measured reflections

  • 1757 independent reflections

  • 775 reflections with I > 2σ(I)

  • R int = 0.063

Refinement

  • R[F 2 > 2σ(F 2)] = 0.081

  • wR(F 2) = 0.104

  • S = 0.99

  • 1757 reflections

  • 139 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.36 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811030029/zj2018sup1.cif

e-67-o2179-sup1.cif (15.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811030029/zj2018Isup2.hkl

e-67-o2179-Isup2.hkl (86.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811030029/zj2018Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.85 (2) 2.03 (3) 2.839 (7) 160 (6)

Symmetry code: (i) Inline graphic.

Acknowledgments

VZR thanks the University Grants Commission, Government of India, New Delhi, for the award of an RFSMS research fellowship.

supplementary crystallographic information

Comment

The amide moiety is an important constituent of many biologically significant compounds. As part of our studies on the effects of ring and side chain substitutions on the structures of N-(aryl)-amides (Bhat & Gowda, 2000; Gowda et al., 2000, 2007), N-(arylsulfonyl)-amides (Rodrigues et al., 2011a,b) and N-(aryl)-arylsulfonamides (Gowda et al., 2005), the crystal structure of N,N-bis(4-chlorophenylsulfonyl)- adipamide has been determined (I) (Fig. 1).

In the two C—SO2—NH—CO—CH2—CH2 central segments of the structure, the N—H, C=O and C—H bonds are anti to the adjacent bonds, similar to that observed in N,N- bis(2-chlorophenylsulfonyl)-adipamide (II) (Rodrigues et al., 2011a) and N,N-bis(4-chlorophenylsulfonyl)-suberamide (III) (Rodrigues et al., 2011b). The orientations of sulfonamide groups with respect to the attached phenyl rings are given by the torsion angles of C2—C1—S1—N1 = -117.1 (6)° and C6—C1—S1—N1 = 60.5 (6)°. The molecule is bent at the S atom with the C1—S1—N1—C7 torsion angle of 55.0 (6)°, compared to the value of -65.1 (6)° in (II).

The dihedral angle between the benzene ring and the SO2—NH—C(O) segment in the two halves of the molecule is 83.5 (2)°, compared to the values of 89.6 (2)° in (II) and 79.5 (2)° in (III).

N—H···O2(S) H-bond formation results in an S=O2 bond longer than the S=O1 bond [1.403 (4)Å versus 1.361 (4) Å]. A series of N—H···O(S) intermolecular hydrogen bonds (Table 1) link the molecules into infinite chains running along c-axis (Fig. 2). The hydrogen bonding preferences of sulfonamides is described elsewhere (Adsmond & Grant, 2001)

Experimental

N,N-Bis(4-chlorophenylsulfonyl)-adipamide was prepared by refluxing a mixture of adipic acid (0.01 mol) with 4-chlorobenzenesulfonamide (0.02 mol) and POCl3 for 1 hr on a water bath. The reaction mixture was allowed to cool and added ether to it. The solid product obtained was filtered, washed thoroughly with ether and hot ethanol. The compound was recrystallized to the constant melting point and was characterized by its infrared and NMR spectra.

Needle like colorless single crystals used in the X-ray diffraction studies were grown by a slow evaporation of a solution of the compound in ethanol at room temperature.

Refinement

The H atom of the NH group was located in a difference map and later restrained to N—H = 0.86 (2) %A. The other H atoms were positioned with idealized geometry using a riding model with the aromatic C—H = 0.93Å and the methylene C—H = 0.97 Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

The distance C1—C6 in the benzene ring was restrained to 1.39 (1) Å.

Figures

Fig. 1.

Fig. 1.

Molecular structure of (I) showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are represented as small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

Molecular packing of the title compound with hydrogen bonding shown as dashed lines.

Crystal data

C18H18Cl2N2O6S2 Z = 1
Mr = 493.36 F(000) = 254
Triclinic, P1 Dx = 1.696 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 5.593 (1) Å Cell parameters from 528 reflections
b = 8.827 (2) Å θ = 3.1–28.0°
c = 9.908 (2) Å µ = 0.60 mm1
α = 89.28 (2)° T = 293 K
β = 87.75 (2)° Needle, colourless
γ = 81.16 (1)° 0.12 × 0.08 × 0.04 mm
V = 482.96 (17) Å3

Data collection

Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector 1757 independent reflections
Radiation source: fine-focus sealed tube 775 reflections with I > 2σ(I)
graphite Rint = 0.063
Rotation method data acquisition using ω scans θmax = 25.4°, θmin = 3.1°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) h = −6→6
Tmin = 0.932, Tmax = 0.977 k = −10→10
2942 measured reflections l = −11→11

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.081 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104 H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.P)2] where P = (Fo2 + 2Fc2)/3
1757 reflections (Δ/σ)max = 0.007
139 parameters Δρmax = 0.41 e Å3
2 restraints Δρmin = −0.36 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.1041 (11) 0.6193 (7) 0.8224 (6) 0.0293 (17)
C2 0.2221 (12) 0.6416 (7) 0.9348 (6) 0.042 (2)
H2 0.3810 0.5932 0.9421 0.051*
C3 0.1175 (13) 0.7325 (8) 1.0388 (7) 0.047 (2)
H3 0.2030 0.7448 1.1155 0.057*
C4 −0.1031 (13) 0.8010 (8) 1.0280 (7) 0.042 (2)
C5 −0.2239 (12) 0.7794 (8) 0.9163 (7) 0.045 (2)
H5 −0.3822 0.8291 0.9100 0.054*
C6 −0.1242 (11) 0.6877 (7) 0.8116 (7) 0.0433 (19)
H6 −0.2120 0.6738 0.7361 0.052*
C7 0.3253 (12) 0.7659 (8) 0.5567 (7) 0.0357 (18)
C8 0.2725 (11) 0.8657 (7) 0.4335 (6) 0.0394 (18)
H8A 0.4234 0.8879 0.3921 0.047*
H8B 0.1936 0.8111 0.3683 0.047*
C9 0.1140 (10) 1.0122 (8) 0.4692 (6) 0.054 (2)
H9A 0.1970 1.0689 0.5309 0.065*
H9B 0.0846 1.0738 0.3881 0.065*
N1 0.2328 (10) 0.6336 (6) 0.5582 (5) 0.0371 (15)
H1N 0.149 (9) 0.600 (6) 0.499 (4) 0.044*
O1 0.4677 (8) 0.4551 (5) 0.7221 (4) 0.0501 (14)
O2 0.0961 (8) 0.4035 (5) 0.6456 (4) 0.0508 (14)
O3 0.4340 (7) 0.8007 (5) 0.6492 (5) 0.0491 (14)
Cl1 −0.2314 (4) 0.9221 (2) 1.15456 (19) 0.0695 (7)
S1 0.2378 (4) 0.5111 (2) 0.68742 (19) 0.0419 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.032 (4) 0.030 (4) 0.026 (4) −0.004 (4) −0.006 (3) 0.003 (3)
C2 0.035 (5) 0.049 (5) 0.039 (5) 0.004 (4) −0.001 (4) 0.002 (4)
C3 0.047 (5) 0.060 (6) 0.031 (5) 0.005 (5) −0.011 (4) −0.001 (4)
C4 0.049 (5) 0.042 (5) 0.031 (5) 0.002 (4) 0.004 (4) 0.009 (4)
C5 0.026 (4) 0.056 (5) 0.049 (5) 0.005 (4) 0.000 (4) 0.005 (4)
C6 0.032 (4) 0.050 (5) 0.048 (5) −0.004 (4) −0.012 (4) 0.001 (4)
C7 0.024 (4) 0.040 (5) 0.041 (5) −0.001 (4) 0.004 (4) −0.013 (4)
C8 0.035 (4) 0.045 (5) 0.036 (5) 0.000 (4) 0.000 (3) 0.005 (4)
C9 0.042 (5) 0.064 (6) 0.053 (5) 0.001 (5) −0.001 (4) 0.017 (4)
N1 0.041 (4) 0.037 (4) 0.035 (4) −0.008 (3) −0.010 (3) −0.005 (3)
O1 0.036 (3) 0.058 (3) 0.050 (3) 0.013 (3) −0.006 (2) −0.003 (3)
O2 0.067 (4) 0.042 (3) 0.047 (3) −0.017 (3) −0.018 (3) 0.000 (3)
O3 0.031 (3) 0.062 (4) 0.055 (4) −0.008 (3) −0.012 (3) −0.005 (3)
Cl1 0.0784 (16) 0.0701 (16) 0.0514 (14) 0.0107 (12) 0.0185 (12) −0.0023 (12)
S1 0.0447 (13) 0.0403 (13) 0.0394 (12) −0.0009 (11) −0.0076 (10) −0.0022 (11)

Geometric parameters (Å, °)

C1—C6 1.333 (6) C7—N1 1.348 (7)
C1—C2 1.348 (8) C7—C8 1.508 (8)
C1—S1 1.731 (6) C8—C9 1.489 (7)
C2—C3 1.370 (7) C8—H8A 0.9700
C2—H2 0.9300 C8—H8B 0.9700
C3—C4 1.295 (8) C9—C9i 1.437 (10)
C3—H3 0.9300 C9—H9A 0.9700
C4—C5 1.350 (8) C9—H9B 0.9700
C4—Cl1 1.719 (7) N1—S1 1.664 (6)
C5—C6 1.371 (7) N1—H1N 0.85 (2)
C5—H5 0.9300 O1—S1 1.361 (4)
C6—H6 0.9300 O2—S1 1.403 (4)
C7—O3 1.188 (7)
C6—C1—C2 119.0 (6) C9—C8—C7 111.2 (5)
C6—C1—S1 117.8 (5) C9—C8—H8A 109.4
C2—C1—S1 123.2 (5) C7—C8—H8A 109.4
C1—C2—C3 122.7 (7) C9—C8—H8B 109.4
C1—C2—H2 118.7 C7—C8—H8B 109.4
C3—C2—H2 118.7 H8A—C8—H8B 108.0
C4—C3—C2 118.6 (7) C9i—C9—C8 112.4 (7)
C4—C3—H3 120.7 C9i—C9—H9A 109.1
C2—C3—H3 120.7 C8—C9—H9A 109.1
C3—C4—C5 119.4 (7) C9i—C9—H9B 109.1
C3—C4—Cl1 119.0 (6) C8—C9—H9B 109.1
C5—C4—Cl1 121.6 (6) H9A—C9—H9B 107.9
C4—C5—C6 123.1 (7) C7—N1—S1 125.5 (5)
C4—C5—H5 118.4 C7—N1—H1N 128 (4)
C6—C5—H5 118.4 S1—N1—H1N 106 (4)
C1—C6—C5 117.2 (6) O1—S1—O2 116.6 (3)
C1—C6—H6 121.4 O1—S1—N1 112.0 (3)
C5—C6—H6 121.4 O2—S1—N1 103.7 (3)
O3—C7—N1 121.0 (7) O1—S1—C1 106.7 (3)
O3—C7—C8 123.7 (7) O2—S1—C1 112.4 (3)
N1—C7—C8 115.3 (6) N1—S1—C1 105.0 (3)
C6—C1—C2—C3 −0.3 (10) C7—C8—C9—C9i −59.2 (9)
S1—C1—C2—C3 177.3 (5) O3—C7—N1—S1 4.7 (9)
C1—C2—C3—C4 −0.6 (11) C8—C7—N1—S1 −173.2 (4)
C2—C3—C4—C5 0.8 (11) C7—N1—S1—O1 −60.3 (6)
C2—C3—C4—Cl1 −177.1 (5) C7—N1—S1—O2 173.2 (5)
C3—C4—C5—C6 −0.2 (11) C7—N1—S1—C1 55.0 (6)
Cl1—C4—C5—C6 177.8 (5) C6—C1—S1—O1 179.5 (5)
C2—C1—C6—C5 1.0 (10) C2—C1—S1—O1 1.8 (6)
S1—C1—C6—C5 −176.8 (4) C6—C1—S1—O2 −51.6 (6)
C4—C5—C6—C1 −0.8 (10) C2—C1—S1—O2 130.8 (5)
O3—C7—C8—C9 −63.7 (9) C6—C1—S1—N1 60.5 (6)
N1—C7—C8—C9 114.2 (6) C2—C1—S1—N1 −117.1 (6)

Symmetry codes: (i) −x, −y+2, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O2ii 0.85 (2) 2.03 (3) 2.839 (7) 160 (6)

Symmetry codes: (ii) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZJ2018).

References

  1. Adsmond, D. A. & Grant, D. J. W. (2001). J. Pharm. Sci. 90, 2058–2077. [DOI] [PubMed]
  2. Bhat, D. K. & Gowda, B. T. (2000). J. Indian Chem. Soc. 77, 279–284.
  3. Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o1975–o1976.
  4. Gowda, B. T., Shetty, M. & Jayalakshmi, K. L. (2005). Z. Naturforsch. Teil A, 60, 106–112.
  5. Gowda, B. T., Svoboda, I. & Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 779–790.
  6. Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
  7. Rodrigues, V. Z., Foro, S. & Gowda, B. T. (2011a). Acta Cryst. E67, o837. [DOI] [PMC free article] [PubMed]
  8. Rodrigues, V. Z., Foro, S. & Gowda, B. T. (2011b). Acta Cryst. E67, o2101. [DOI] [PMC free article] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811030029/zj2018sup1.cif

e-67-o2179-sup1.cif (15.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811030029/zj2018Isup2.hkl

e-67-o2179-Isup2.hkl (86.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811030029/zj2018Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES