Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jul 30;67(Pt 8):o2180. doi: 10.1107/S1600536811030042

(2-Hy­droxy-4-meth­oxy­phen­yl)(2-hy­droxy­phen­yl)methanone

Richard Betz a,*, Thomas Gerber a, Eric Hosten a, Henk Schalekamp a
PMCID: PMC3213614  PMID: 22091191

Abstract

The title compound, C14H12O4, is an asymmetric substitution product of benzophenone. Both hy­droxy groups are orientated towards the O atom of the keto group. Intra­molecular as well as inter­molecular O—H⋯O hydrogen bonds can be observed in the crystal structure, with the latter connecting the mol­ecules into chains along the crystallographic b axis. C—H⋯O contacts [C⋯O = 3.3297 (18) Å] are also apparent. The closest centroid–centroid distance between two aromatic systems is 4.9186 (9) Å.

Related literature

For the crystal structure of benzophenone, see: Lobanova (1968); Kutzke et al. (2000); Fleischer et al. (1968); Bernstein et al. (2002); Moncol & Coppens (2004). For the crystal structure of bis­(2-hy­droxy­phen­yl)methanone, see: Betz et al. (2011). For details on graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995). For a comparison of the thermodynamic stability of coordination compounds containing chelate ligands as opposed to monodentate ligands, see: Gade (1998).graphic file with name e-67-o2180-scheme1.jpg

Experimental

Crystal data

  • C14H12O4

  • M r = 244.24

  • Orthorhombic, Inline graphic

  • a = 4.8582 (2) Å

  • b = 14.0236 (5) Å

  • c = 16.8636 (5) Å

  • V = 1148.91 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 200 K

  • 0.48 × 0.14 × 0.05 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • 6314 measured reflections

  • 1683 independent reflections

  • 1484 reflections with I > 2σ(I)

  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.030

  • wR(F 2) = 0.083

  • S = 1.07

  • 1683 reflections

  • 166 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811030042/lw2071sup1.cif

e-67-o2180-sup1.cif (16.1KB, cif)

Supplementary material file. DOI: 10.1107/S1600536811030042/lw2071Isup2.cdx

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811030042/lw2071Isup3.hkl

e-67-o2180-Isup3.hkl (83KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811030042/lw2071Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1 0.84 1.88 2.6058 (17) 144
O3—H3⋯O1 0.84 1.91 2.6267 (17) 142
O3—H3⋯O4i 0.84 2.50 2.9306 (15) 113
C15—H15⋯O1ii 0.95 2.57 3.3297 (18) 137

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank Mrs Angelika Obermeyer for helpful discussions.

supplementary crystallographic information

Comment

Chelate ligands have found widespread use in coordination chemistry due to the enhanced thermodynamic stability of resultant coordination compounds in relation to coordination compounds exclusively applying comparable monodentate ligands (Gade, 1998). Combining two identical donor atoms in different states of hybridization seemed to be useful to us to accomodate a large variety of metal centers of variable Lewis acidity. To enable comparative studies in terms of bond lengths and angles in envisioned coordination compounds, we determined the molecular and crystal structure of the title compound. The crystal structure of benzophenone is apparent in the literature (Lobanova, 1968; Kutzke et al., 2000; Fleischer et al., 1968; Bernstein et al., 2002; Moncol & Coppens, 2004) as is the crystal structure of bis(2-hydroxyphenyl)methanone (Betz et al., 2011).

The title compound is an asymmetric substitution product of benzophenone. Both aromatic moieties adopt a conformation in which its hydroxyl group is orientated towards the central oxygen atom. The least-squares planes defined by the respective carbon atoms of both aromatic rings intersect at an angle of 42.11 (6) °. Intracyclic C–C–C angles hardly deviate from the ideal value of 120 °. The methoxy group is nearly in plane with its resident aromatic system, the respective C–O–C–C torsional angle is found at 4.9 (2) ° (Fig. 1).

In the crystal structure, intra- as well as intermolecular hydrogen bonds are observed. While the intramolecular hydrogen bonds are apparent between the hydroxyl groups as donors and the double-bonded oxygen atom as acceptor, the intermolecular hydrogen bond stems from the hydroxyl group on the otherwise unsubstituted phenyl ring and has the etheric oxygen atom as acceptor (Fig. 2). The latter hydrogen bond thus shows bifurcation. In addition, a C–H···O contact whose range falls by more than 0.1 Å below the sum of van-der-Waals radii is present in the crystal structure. The latter one is supported by one of the CH groups in ortho-position to the methoxy substituent and has the keto group's oxygen atom as acceptor. In terms of graph-set analysis (Etter et al., 1990; Bernstein et al., 1995), the descriptor for the hydrogen bonding system based on the hydroxyl groups on the unitary level is S(6)S(6)C(10) while the C–H···O contacts necessitate a C(6) descriptor on the same level. In total, the molecules are connected to undulated chains along the crystallographic b axis. The shortest intercentroid distance between two aromatic systems was measured to be at 4.9186 (9) Å and is apparent between the two different aromatic moieties.

The molecular packing of the title compound in the crystal structure is shown in Figure 3.

Experimental

The compound was obtained commercially (Aldrich). Crystals suitable for the X-ray diffraction study were taken directly from the provided product.

Refinement

Carbon-bound H atoms were placed in calculated positions (C—H 0.95 Å for aromatic carbon atoms) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C). The H atoms of the methyl group were allowed to rotate with a fixed angle around their respective C—O bond to best fit the experimental electron density (HFIX 137 in the SHELX program suite (Sheldrick, 2008)), with U(H) set to 1.5Ueq(C) and C—H set to 0.98 Å. The H atoms of the hydroxyl groups were allowed to rotate with a fixed angle around their respective C—O bond to best fit the experimental electron density (HFIX 147 in the SHELX program suite (Sheldrick, 2008)), with U(H) set to 1.5Ueq(O) and O—H set to 0.84 Å.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level).

Fig. 2.

Fig. 2.

Intermolecular contacts, viewed along [0 0 - 1]. Blue dashed lines indicate intramolecular hydrogen bonds, green dashed lines intermolecular hydrogen bonds and yellow dashed lines C–H···O contacts. Symmetry operators: i -x + 2, y + 1/2, -z + 1/2; ii -x + 2, y - 1/2, -z + 1/2.

Fig. 3.

Fig. 3.

Molecular packing of the title compound, viewed along [-1 0 0] (anisotropic displacement ellipsoids drawn at 50% probability level).

Crystal data

C14H12O4 F(000) = 512
Mr = 244.24 Dx = 1.412 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 4306 reflections
a = 4.8582 (2) Å θ = 2.8–28.2°
b = 14.0236 (5) Å µ = 0.10 mm1
c = 16.8636 (5) Å T = 200 K
V = 1148.91 (7) Å3 Platelet, yellow
Z = 4 0.48 × 0.14 × 0.05 mm

Data collection

Bruker APEXII CCD diffractometer 1484 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.021
graphite θmax = 28.3°, θmin = 1.9°
φ and ω scans h = −4→6
6314 measured reflections k = −18→17
1683 independent reflections l = −21→22

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083 H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0509P)2 + 0.0857P] where P = (Fo2 + 2Fc2)/3
1683 reflections (Δ/σ)max < 0.001
166 parameters Δρmax = 0.18 e Å3
0 restraints Δρmin = −0.17 e Å3

Special details

Refinement. Due to the absence of a strong anomalous scatterer, the Flack parameter is meaningless. Thus, Friedel opposites (1966 pairs) have been merged and the item was removed from the CIF.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 1.0688 (3) −0.07918 (7) 0.34393 (6) 0.0382 (3)
O2 0.6572 (3) −0.06852 (7) 0.24525 (6) 0.0374 (3)
H2 0.7719 −0.0968 0.2741 0.056*
O3 1.4961 (3) −0.08333 (8) 0.43931 (7) 0.0390 (3)
H3 1.4061 −0.1013 0.3995 0.058*
O4 0.4289 (3) 0.24323 (8) 0.15520 (6) 0.0405 (3)
C1 1.0352 (3) 0.00668 (10) 0.36067 (8) 0.0288 (3)
C2 0.2546 (5) 0.20454 (13) 0.09489 (11) 0.0447 (5)
H2A 0.3649 0.1660 0.0583 0.067*
H2B 0.1664 0.2567 0.0657 0.067*
H2C 0.1130 0.1644 0.1194 0.067*
C11 0.8770 (3) 0.06797 (10) 0.30686 (8) 0.0273 (3)
C12 0.6941 (3) 0.02686 (10) 0.25159 (8) 0.0279 (3)
C13 0.5372 (4) 0.08324 (11) 0.20056 (8) 0.0296 (3)
H13 0.4108 0.0546 0.1648 0.036*
C14 0.5676 (4) 0.18145 (10) 0.20262 (8) 0.0309 (3)
C15 0.7562 (4) 0.22409 (10) 0.25446 (8) 0.0335 (4)
H15 0.7797 0.2913 0.2545 0.040*
C16 0.9063 (4) 0.16846 (10) 0.30496 (8) 0.0309 (3)
H16 1.0341 0.1980 0.3398 0.037*
C21 1.1541 (4) 0.04328 (10) 0.43571 (8) 0.0275 (3)
C22 1.3752 (4) −0.00534 (10) 0.47108 (9) 0.0297 (3)
C23 1.4840 (4) 0.02689 (11) 0.54312 (9) 0.0344 (4)
H23 1.6380 −0.0046 0.5659 0.041*
C24 1.3687 (4) 0.10414 (12) 0.58103 (9) 0.0373 (4)
H24 1.4441 0.1256 0.6298 0.045*
C25 1.1439 (4) 0.15086 (11) 0.54881 (9) 0.0355 (4)
H25 1.0621 0.2030 0.5760 0.043*
C26 1.0397 (4) 0.12097 (10) 0.47670 (8) 0.0310 (3)
H26 0.8872 0.1537 0.4543 0.037*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0427 (7) 0.0264 (5) 0.0456 (6) 0.0066 (6) −0.0057 (6) −0.0090 (4)
O2 0.0490 (7) 0.0230 (5) 0.0403 (5) −0.0041 (5) −0.0070 (6) −0.0036 (4)
O3 0.0417 (7) 0.0346 (6) 0.0406 (6) 0.0111 (6) −0.0018 (6) −0.0034 (5)
O4 0.0549 (8) 0.0284 (5) 0.0380 (5) −0.0066 (6) −0.0164 (7) 0.0015 (4)
C1 0.0276 (8) 0.0267 (6) 0.0322 (6) −0.0003 (6) 0.0032 (7) −0.0035 (5)
C2 0.0554 (12) 0.0360 (8) 0.0428 (8) −0.0058 (9) −0.0199 (10) −0.0001 (7)
C11 0.0292 (8) 0.0252 (7) 0.0275 (6) −0.0020 (7) 0.0037 (7) −0.0036 (5)
C12 0.0318 (8) 0.0246 (7) 0.0272 (6) −0.0045 (6) 0.0057 (7) −0.0044 (5)
C13 0.0323 (8) 0.0286 (7) 0.0279 (6) −0.0055 (7) −0.0010 (7) −0.0035 (5)
C14 0.0367 (9) 0.0300 (7) 0.0260 (6) −0.0027 (7) −0.0003 (8) 0.0006 (5)
C15 0.0449 (9) 0.0231 (6) 0.0324 (7) −0.0090 (7) −0.0045 (9) 0.0002 (5)
C16 0.0370 (9) 0.0260 (7) 0.0298 (6) −0.0080 (7) −0.0016 (8) −0.0024 (5)
C21 0.0302 (8) 0.0234 (6) 0.0289 (6) −0.0021 (6) 0.0037 (7) 0.0008 (5)
C22 0.0324 (8) 0.0254 (7) 0.0313 (6) −0.0024 (7) 0.0057 (7) 0.0026 (5)
C23 0.0356 (9) 0.0337 (8) 0.0338 (7) −0.0041 (7) −0.0028 (8) 0.0057 (6)
C24 0.0470 (10) 0.0348 (8) 0.0300 (7) −0.0118 (8) −0.0009 (8) −0.0011 (6)
C25 0.0436 (10) 0.0285 (7) 0.0343 (7) −0.0038 (7) 0.0063 (8) −0.0059 (6)
C26 0.0343 (9) 0.0258 (7) 0.0329 (7) −0.0011 (7) 0.0022 (7) −0.0007 (5)

Geometric parameters (Å, °)

O1—C1 1.2475 (18) C13—H13 0.9500
O2—C12 1.3537 (16) C14—C15 1.401 (2)
O2—H2 0.8400 C15—C16 1.366 (2)
O3—C22 1.3522 (19) C15—H15 0.9500
O3—H3 0.8400 C16—H16 0.9500
O4—C14 1.3578 (19) C21—C26 1.405 (2)
O4—C2 1.430 (2) C21—C22 1.405 (2)
C1—C11 1.467 (2) C22—C23 1.400 (2)
C1—C21 1.483 (2) C23—C24 1.377 (2)
C2—H2A 0.9800 C23—H23 0.9500
C2—H2B 0.9800 C24—C25 1.384 (3)
C2—H2C 0.9800 C24—H24 0.9500
C11—C12 1.411 (2) C25—C26 1.382 (2)
C11—C16 1.417 (2) C25—H25 0.9500
C12—C13 1.395 (2) C26—H26 0.9500
C13—C14 1.386 (2)
C12—O2—H2 109.5 C16—C15—C14 119.64 (13)
C22—O3—H3 109.5 C16—C15—H15 120.2
C14—O4—C2 118.06 (12) C14—C15—H15 120.2
O1—C1—C11 119.60 (13) C15—C16—C11 121.91 (15)
O1—C1—C21 118.44 (14) C15—C16—H16 119.0
C11—C1—C21 121.95 (12) C11—C16—H16 119.0
O4—C2—H2A 109.5 C26—C21—C22 118.02 (13)
O4—C2—H2B 109.5 C26—C21—C1 122.29 (15)
H2A—C2—H2B 109.5 C22—C21—C1 119.48 (13)
O4—C2—H2C 109.5 O3—C22—C23 116.15 (15)
H2A—C2—H2C 109.5 O3—C22—C21 123.81 (13)
H2B—C2—H2C 109.5 C23—C22—C21 120.04 (14)
C12—C11—C16 117.06 (14) C24—C23—C22 120.20 (17)
C12—C11—C1 119.94 (12) C24—C23—H23 119.9
C16—C11—C1 122.95 (14) C22—C23—H23 119.9
O2—C12—C13 116.03 (13) C23—C24—C25 120.74 (15)
O2—C12—C11 122.64 (13) C23—C24—H24 119.6
C13—C12—C11 121.33 (13) C25—C24—H24 119.6
C14—C13—C12 119.32 (14) C26—C25—C24 119.38 (15)
C14—C13—H13 120.3 C26—C25—H25 120.3
C12—C13—H13 120.3 C24—C25—H25 120.3
O4—C14—C13 124.52 (14) C25—C26—C21 121.54 (16)
O4—C14—C15 114.82 (13) C25—C26—H26 119.2
C13—C14—C15 120.64 (15) C21—C26—H26 119.2
O1—C1—C11—C12 20.0 (2) C12—C11—C16—C15 2.8 (2)
C21—C1—C11—C12 −159.02 (14) C1—C11—C16—C15 −179.82 (15)
O1—C1—C11—C16 −157.31 (16) O1—C1—C21—C26 −152.15 (16)
C21—C1—C11—C16 23.7 (2) C11—C1—C21—C26 26.9 (2)
C16—C11—C12—O2 177.13 (15) O1—C1—C21—C22 22.6 (2)
C1—C11—C12—O2 −0.3 (2) C11—C1—C21—C22 −158.41 (14)
C16—C11—C12—C13 −3.7 (2) C26—C21—C22—O3 177.31 (15)
C1—C11—C12—C13 178.86 (14) C1—C21—C22—O3 2.4 (2)
O2—C12—C13—C14 −178.84 (15) C26—C21—C22—C23 −3.2 (2)
C11—C12—C13—C14 1.9 (2) C1—C21—C22—C23 −178.13 (14)
C2—O4—C14—C13 −4.9 (2) O3—C22—C23—C24 −178.06 (15)
C2—O4—C14—C15 173.44 (16) C21—C22—C23—C24 2.4 (2)
C12—C13—C14—O4 179.11 (14) C22—C23—C24—C25 0.1 (3)
C12—C13—C14—C15 0.9 (2) C23—C24—C25—C26 −1.8 (3)
O4—C14—C15—C16 179.84 (15) C24—C25—C26—C21 0.9 (2)
C13—C14—C15—C16 −1.8 (3) C22—C21—C26—C25 1.6 (2)
C14—C15—C16—C11 −0.1 (3) C1—C21—C26—C25 176.35 (14)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O2—H2···O1 0.84 1.88 2.6058 (17) 144
O3—H3···O1 0.84 1.91 2.6267 (17) 142
O3—H3···O4i 0.84 2.50 2.9306 (15) 113
C15—H15···O1ii 0.95 2.57 3.3297 (18) 137

Symmetry codes: (i) −x+2, y−1/2, −z+1/2; (ii) −x+2, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LW2071).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  2. Bernstein, J., Ellern, A. & Henck, J.-O. (2002). Private communication (CCDC 118986, refcode BPHNO11). CCDC, Union Road, Cambridge, England.
  3. Betz, R., Gerber, T. & Schalekamp, H. (2011). Acta Cryst. E67, o1897. [DOI] [PMC free article] [PubMed]
  4. Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [DOI] [PubMed]
  6. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  7. Fleischer, E. B., Sung, N. & Hawkinson, S. (1968). J. Phys. Chem. 72, 4311–4312.
  8. Gade, L. H. (1998). Koordinationschemie, 1st ed. Weinheim: Wiley–VCH.
  9. Kutzke, H., Klapper, H., Hammond, R. B. & Roberts, K. J. (2000). Acta Cryst. B56, 486–496. [DOI] [PubMed]
  10. Lobanova, G. M. (1968). Kristallografiya, 13, 984–986.
  11. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  12. Moncol, J. & Coppens, P. (2004). Private communication (CCDC 245188, refcode BPHNO12). CCDC, Union Road, Cambridge, England.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811030042/lw2071sup1.cif

e-67-o2180-sup1.cif (16.1KB, cif)

Supplementary material file. DOI: 10.1107/S1600536811030042/lw2071Isup2.cdx

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811030042/lw2071Isup3.hkl

e-67-o2180-Isup3.hkl (83KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811030042/lw2071Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES