Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jul 30;67(Pt 8):o2185. doi: 10.1107/S1600536811027127

Cyclo­hexyl­ammonium 4-meth­oxy­benzoate

Bin Wei a,*
PMCID: PMC3213617  PMID: 22091194

Abstract

In the crystal of the title molecular salt, C6H14N+·C8H7O3 , strong N—H⋯O hydrogen bonds are formed between the ammonium H atoms and the carboxyl­ate O atoms. The resulting supra­molecular structure is based on chains running in the [010] direction. The dihedral angle between the –CO2 group and the benzene ring is 8.94 (17)° and the methoxy C atom deviates by 1.374 Å from the ring.

Related literature

The title compound was studied during our search for aromatic compounds containing ammonium salts or amidogens having dielectric–ferroelectric properties (Wu et al., 2011). For general background on ferroelectric metal-organic frameworks, see: Ye et al. (2006); Zhang et al. (2008, 2010); Fu et al. (2009). graphic file with name e-67-o2185-scheme1.jpg

Experimental

Crystal data

  • C6H14N+·C8H7O3

  • M r = 251.32

  • Monoclinic, Inline graphic

  • a = 8.9076 (18) Å

  • b = 6.6025 (13) Å

  • c = 11.778 (2) Å

  • β = 102.85 (3)°

  • V = 675.3 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.2 × 0.2 × 0.2 mm

Data collection

  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) T min = 0.842, T max = 1.000

  • 7050 measured reflections

  • 1685 independent reflections

  • 1460 reflections with I > 2σ(I)

  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.095

  • S = 1.08

  • 1685 reflections

  • 165 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811027127/bh2364sup1.cif

e-67-o2185-sup1.cif (15.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811027127/bh2364Isup2.hkl

e-67-o2185-Isup2.hkl (83KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811027127/bh2364Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1C⋯O1 0.89 1.86 2.744 (3) 173
N1—H1A⋯O2i 0.89 1.91 2.787 (2) 167
N1—H1B⋯O2ii 0.89 1.95 2.830 (3) 168

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The author is grateful to the starter fund of Southeast University for the purchase of the diffractometer.

supplementary crystallographic information

Comment

Our research deals with new dielectric-ferroelectric materials. Recent studies have revealed that organic salt compounds which have one or more amidogens probably have this kind of property (Fu et al., 2009; Zhang et al., 2008, 2010; Ye et al., 2006). Thus, we are searching for aromatic compounds containing amidogens having dielectric-ferroelectric properties (Wu et al., 2011). Unfortunately, the dielectric constant of the title compound as a function of temperature indicates that the permittivity is basically temperature-independent below the melting point of the salt (413 K – 415 K). We have found that cyclohexylammonium 4-methoxybenzoate has no dielectric inhomogeneity from 80 K to 405 K. Herein, we describe the crystal structure of this compound.

The asymmetric unit of the title compound consists of a cyclohexylammonium cation, and a 4-methoxybenzoate anion (Fig. 1). Strong N—H···O hydrogen bonds are formed between the H atoms of the ammonium group and the O atoms of the carboxylate group, which also make great contribution to the stability of the crystal structure, linking the cations and anions into chains along the b axis (Table 1 and Fig. 2).

Experimental

The title compound was obtained by addition of para-methoxybenzoic acid (1.52 g, 0.01 mol) to a solution of cyclohexylamine (1.02 g, 0.01 mol) in methanol, in the stoichiometric ratio 1:1. Good quality single crystals were obtained by slow evaporation after two days (the chemical yield is 45%).

Refinement

All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.97 Å (methylene), C—H = 0.96 Å (methyl), C—H = 0.98 Å (methine), and C—H = 0.93 Å (aromatic), and with Uiso(H) = 1.2Ueq(C except methyl) or Uiso(H) = 1.5Ueq(C of methyl). The H atoms bonded to N1 were refined as riding atoms with N—H = 0.89 Å, and Uiso(H) = 1.5Ueq(N1). Since no significant anomalous dispersion is expected for this formula, measured Friedel pairs (1408) were merged.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with displacement ellipsoids at the 30% probability level.

Fig. 2.

Fig. 2.

A view of the packing of the title compound, along the a axis. Dashed lines indicate hydrogen bonds.

Crystal data

C6H14N+·C8H7O3 F(000) = 272
Mr = 251.32 Dx = 1.236 Mg m3
Monoclinic, P21 Melting point: 413 K
Hall symbol: P 2yb Mo Kα radiation, λ = 0.71073 Å
a = 8.9076 (18) Å θ = 6.2–55.3°
b = 6.6025 (13) Å µ = 0.09 mm1
c = 11.778 (2) Å T = 293 K
β = 102.85 (3)° Prism, colourless
V = 675.3 (2) Å3 0.2 × 0.2 × 0.2 mm
Z = 2

Data collection

Rigaku Mercury CCD diffractometer 1685 independent reflections
Radiation source: fine-focus sealed tube 1460 reflections with I > 2σ(I)
graphite Rint = 0.030
Detector resolution: 28.5714 pixels mm-1 θmax = 27.5°, θmin = 3.2°
ω scans h = −11→11
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) k = −8→8
Tmin = 0.842, Tmax = 1.000 l = −15→15
7050 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095 H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0414P)2 + 0.1056P] where P = (Fo2 + 2Fc2)/3
1685 reflections (Δ/σ)max < 0.001
165 parameters Δρmax = 0.14 e Å3
1 restraint Δρmin = −0.18 e Å3
0 constraints

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.1890 (3) −0.1036 (5) 1.0959 (2) 0.0572 (7)
H1D 0.1425 −0.1725 1.0250 0.086*
H1E 0.1322 −0.1329 1.1543 0.086*
H1F 0.2934 −0.1488 1.1222 0.086*
C2 0.2544 (3) 0.1768 (4) 0.9883 (2) 0.0408 (6)
C3 0.2302 (3) 0.3798 (4) 0.9597 (2) 0.0459 (6)
H3 0.1750 0.4605 1.0007 0.055*
C4 0.2879 (3) 0.4619 (3) 0.8707 (2) 0.0390 (5)
H4 0.2723 0.5987 0.8530 0.047*
C5 0.3689 (2) 0.3440 (3) 0.80676 (18) 0.0320 (5)
C6 0.3940 (3) 0.1422 (4) 0.83805 (19) 0.0381 (5)
H6 0.4490 0.0612 0.7971 0.046*
C7 0.3391 (3) 0.0583 (4) 0.9290 (2) 0.0420 (6)
H7 0.3592 −0.0766 0.9498 0.050*
C8 0.4250 (2) 0.4355 (3) 0.70654 (19) 0.0338 (5)
C9 0.7266 (2) 0.9048 (4) 0.64892 (18) 0.0352 (5)
H9 0.7382 0.9081 0.7336 0.042*
C10 0.7925 (3) 0.7064 (4) 0.6172 (3) 0.0476 (6)
H10A 0.7763 0.6960 0.5332 0.057*
H10B 0.7396 0.5943 0.6445 0.057*
C11 0.9646 (3) 0.6941 (4) 0.6720 (3) 0.0562 (7)
H11A 0.9796 0.6892 0.7561 0.067*
H11B 1.0061 0.5703 0.6468 0.067*
C12 1.0512 (3) 0.8741 (5) 0.6383 (2) 0.0534 (7)
H12A 1.1587 0.8656 0.6782 0.064*
H12B 1.0458 0.8710 0.5552 0.064*
C13 0.9841 (3) 1.0711 (4) 0.6698 (3) 0.0533 (7)
H13A 1.0376 1.1837 0.6435 0.064*
H13B 0.9994 1.0805 0.7538 0.064*
C14 0.8118 (3) 1.0854 (4) 0.6142 (2) 0.0435 (6)
H14A 0.7704 1.2094 0.6391 0.052*
H14B 0.7970 1.0896 0.5301 0.052*
N1 0.5590 (2) 0.9176 (3) 0.59367 (15) 0.0354 (4)
H1A 0.5457 0.9073 0.5167 0.053*
H1B 0.5221 1.0358 0.6114 0.053*
H1C 0.5093 0.8172 0.6199 0.053*
O1 0.4131 (2) 0.6223 (3) 0.69286 (16) 0.0517 (5)
O2 0.47886 (19) 0.3187 (3) 0.64103 (13) 0.0452 (4)
O3 0.1875 (2) 0.1079 (3) 1.07544 (16) 0.0599 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0654 (16) 0.0534 (16) 0.0579 (16) −0.0038 (15) 0.0249 (13) 0.0187 (15)
C2 0.0483 (13) 0.0402 (13) 0.0366 (12) −0.0055 (11) 0.0155 (10) 0.0006 (10)
C3 0.0602 (15) 0.0351 (12) 0.0500 (14) −0.0010 (12) 0.0284 (11) −0.0100 (11)
C4 0.0459 (13) 0.0288 (11) 0.0453 (13) 0.0011 (10) 0.0162 (10) −0.0006 (9)
C5 0.0312 (10) 0.0313 (12) 0.0329 (10) −0.0017 (9) 0.0058 (8) −0.0004 (9)
C6 0.0429 (12) 0.0343 (12) 0.0392 (12) 0.0056 (10) 0.0138 (9) 0.0000 (10)
C7 0.0534 (14) 0.0319 (12) 0.0426 (13) 0.0034 (11) 0.0148 (11) 0.0049 (10)
C8 0.0316 (10) 0.0354 (13) 0.0351 (11) 0.0018 (9) 0.0089 (8) 0.0038 (9)
C9 0.0406 (11) 0.0329 (11) 0.0327 (11) 0.0030 (10) 0.0096 (8) 0.0015 (9)
C10 0.0499 (15) 0.0259 (12) 0.0675 (18) 0.0038 (10) 0.0138 (13) −0.0009 (11)
C11 0.0535 (16) 0.0412 (15) 0.0723 (19) 0.0159 (13) 0.0103 (14) 0.0038 (13)
C12 0.0419 (13) 0.0561 (18) 0.0619 (16) 0.0085 (13) 0.0111 (11) −0.0013 (14)
C13 0.0448 (14) 0.0416 (16) 0.0712 (18) −0.0015 (12) 0.0085 (13) −0.0071 (13)
C14 0.0449 (14) 0.0298 (12) 0.0561 (15) 0.0005 (10) 0.0115 (12) −0.0008 (11)
N1 0.0432 (10) 0.0296 (9) 0.0365 (9) 0.0016 (8) 0.0155 (7) 0.0016 (8)
O1 0.0631 (11) 0.0335 (9) 0.0680 (12) 0.0048 (9) 0.0350 (9) 0.0120 (9)
O2 0.0629 (11) 0.0387 (9) 0.0398 (9) 0.0088 (8) 0.0241 (8) 0.0046 (8)
O3 0.0912 (14) 0.0467 (11) 0.0552 (11) −0.0064 (11) 0.0446 (10) 0.0020 (9)

Geometric parameters (Å, °)

C1—O3 1.417 (3) C9—C14 1.518 (3)
C1—H1D 0.9600 C9—H9 0.9800
C1—H1E 0.9600 C10—C11 1.528 (4)
C1—H1F 0.9600 C10—H10A 0.9700
C2—O3 1.374 (3) C10—H10B 0.9700
C2—C7 1.380 (3) C11—C12 1.517 (4)
C2—C3 1.387 (4) C11—H11A 0.9700
C3—C4 1.376 (3) C11—H11B 0.9700
C3—H3 0.9300 C12—C13 1.511 (4)
C4—C5 1.392 (3) C12—H12A 0.9700
C4—H4 0.9300 C12—H12B 0.9700
C5—C6 1.387 (3) C13—C14 1.532 (4)
C5—C8 1.507 (3) C13—H13A 0.9700
C6—C7 1.389 (3) C13—H13B 0.9700
C6—H6 0.9300 C14—H14A 0.9700
C7—H7 0.9300 C14—H14B 0.9700
C8—O1 1.246 (3) N1—H1A 0.8900
C8—O2 1.259 (3) N1—H1B 0.8900
C9—N1 1.492 (3) N1—H1C 0.8900
C9—C10 1.516 (3)
O3—C1—H1D 109.5 C11—C10—H10A 109.6
O3—C1—H1E 109.5 C9—C10—H10B 109.6
H1D—C1—H1E 109.5 C11—C10—H10B 109.6
O3—C1—H1F 109.5 H10A—C10—H10B 108.1
H1D—C1—H1F 109.5 C12—C11—C10 111.6 (2)
H1E—C1—H1F 109.5 C12—C11—H11A 109.3
O3—C2—C7 124.6 (2) C10—C11—H11A 109.3
O3—C2—C3 115.6 (2) C12—C11—H11B 109.3
C7—C2—C3 119.9 (2) C10—C11—H11B 109.3
C4—C3—C2 120.1 (2) H11A—C11—H11B 108.0
C4—C3—H3 119.9 C13—C12—C11 111.0 (2)
C2—C3—H3 119.9 C13—C12—H12A 109.4
C3—C4—C5 121.2 (2) C11—C12—H12A 109.4
C3—C4—H4 119.4 C13—C12—H12B 109.4
C5—C4—H4 119.4 C11—C12—H12B 109.4
C6—C5—C4 117.8 (2) H12A—C12—H12B 108.0
C6—C5—C8 122.08 (19) C12—C13—C14 111.2 (2)
C4—C5—C8 120.14 (19) C12—C13—H13A 109.4
C5—C6—C7 121.7 (2) C14—C13—H13A 109.4
C5—C6—H6 119.2 C12—C13—H13B 109.4
C7—C6—H6 119.2 C14—C13—H13B 109.4
C2—C7—C6 119.4 (2) H13A—C13—H13B 108.0
C2—C7—H7 120.3 C9—C14—C13 110.5 (2)
C6—C7—H7 120.3 C9—C14—H14A 109.6
O1—C8—O2 124.1 (2) C13—C14—H14A 109.6
O1—C8—C5 117.7 (2) C9—C14—H14B 109.6
O2—C8—C5 118.20 (19) C13—C14—H14B 109.6
N1—C9—C10 110.26 (19) H14A—C14—H14B 108.1
N1—C9—C14 110.48 (18) C9—N1—H1A 109.5
C10—C9—C14 111.59 (17) C9—N1—H1B 109.5
N1—C9—H9 108.1 H1A—N1—H1B 109.5
C10—C9—H9 108.1 C9—N1—H1C 109.5
C14—C9—H9 108.1 H1A—N1—H1C 109.5
C9—C10—C11 110.5 (2) H1B—N1—H1C 109.5
C9—C10—H10A 109.6 C2—O3—C1 117.6 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1C···O1 0.89 1.86 2.744 (3) 173.
N1—H1A···O2i 0.89 1.91 2.787 (2) 167.
N1—H1B···O2ii 0.89 1.95 2.830 (3) 168.

Symmetry codes: (i) −x+1, y+1/2, −z+1; (ii) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2364).

References

  1. Fu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994–997.
  2. Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  3. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  4. Wu, D.-H., Ge, J.-Z., Cai, H.-L., Zhang, W. & Xiong, R.-G. (2011). CrystEngComm, 13, 319–324.
  5. Ye, Q., Song, Y.-M., Wang, G.-X., Chen, K., Fu, D.-W., Chan, P. W. H., Zhu, J.-S., Huang, S. D. & Xiong, R.-G. (2006). J. Am. Chem. Soc. 128, 6554–6555. [DOI] [PubMed]
  6. Zhang, W., Xiong, R.-G. & Huang, S.-P. D. (2008). J. Am. Chem. Soc. 130, 10468–10469. [DOI] [PubMed]
  7. Zhang, W., Ye, H.-Y., Cai, H.-L., Ge, J.-Z., Xiong, R.-G. & Huang, S.-P. D. (2010). J. Am. Chem. Soc. 132, 7300–7302. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811027127/bh2364sup1.cif

e-67-o2185-sup1.cif (15.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811027127/bh2364Isup2.hkl

e-67-o2185-Isup2.hkl (83KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811027127/bh2364Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES