Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jul 30;67(Pt 8):o2187–o2188. doi: 10.1107/S1600536811029928

Methyl 2-(3a,8a-dimethyl-4-oxodeca­hydro­azulen-6-yl)acrylate

Mohamed Tebbaa a,*, Ahmed Benharref a, Moha Berraho a, Jean Claude Daran b, Mohamed Akssira c, Ahmed Elhakmaoui c
PMCID: PMC3213619  PMID: 22091196

Abstract

The title compound, C16H24O3, was synthesized from ilicic acid, which was isolated from the aerial part of Inula viscosa­ (L) Aiton [or Dittrichia viscosa­ (L) Greuter]. The asymmetric unit contains two independent mol­ecules, in each of which the seven-membered ring shows a chair conformation, whereas the five-membered ring presents disorder. In the two molecules, three C atoms in the five-membered ring are disordered over two positions with site-occupancy factors of 0.53/0.47 and 0.83/0.17. The dihedral angle between the two rings is different in the two mol­ecules [31.7 (3) and 47.7 (7)°]. The crystal structure is stabilized by weak inter­molecular C—H⋯O hydrogen-bond inter­actions.

Related literature

For background to the medicinal inter­est in Inula viscosa­ (L) Aiton [or Dittrichia viscosa­ (L) Greuter], see: Shtacher & Kasshman (1970); Chiappini et al. (1982); Azoulay et al. (1986); Bohlman et al. (1977); Ceccherelli et al. (1988); Geissman & Toribio (1967). For conformational analysis, see: Cremer & Pople (1975). For a related synthesis, see: Barrero et al. (2009).graphic file with name e-67-o2187-scheme1.jpg

Experimental

Crystal data

  • C16H24O3

  • M r = 264.35

  • Monoclinic, Inline graphic

  • a = 6.6954 (3) Å

  • b = 6.9447 (3) Å

  • c = 31.6168 (18) Å

  • β = 90.095 (7)°

  • V = 1470.10 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 180 K

  • 0.33 × 0.23 × 0.15 mm

Data collection

  • Agilent Xcalibur Eos Gemini ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) T min = 0.843, T max = 1.000

  • 9032 measured reflections

  • 5575 independent reflections

  • 4990 reflections with I > 2σ(I)

  • R int = 0.020

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.110

  • S = 1.06

  • 5575 reflections

  • 356 parameters

  • 19 restraints

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811029928/om2451sup1.cif

e-67-o2187-sup1.cif (38.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811029928/om2451Isup2.hkl

e-67-o2187-Isup2.hkl (267.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811029928/om2451Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C112—H11B⋯O11i 0.93 2.42 3.325 (7) 165
C212—H21A⋯O21i 0.93 2.45 3.348 (6) 162
C26—H26B⋯O23ii 0.97 2.58 3.427 (6) 146

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank the Unit of Support for Technical and Scientific Research (UATRS and CNRST) for the X-ray measurements.

supplementary crystallographic information

Comment

The Inula Viscosa (L) is widespread in Mediterranean area and extends to the Atlantic cost of Morocco. It is a well known medicinal plant (Shtacher & Kasshman, 1970; Chiappini et al., 1982) and has some pharmacological activities (Azoulay et al., 1986). This plant has been the subject of chemical investigation in terms of isolating sesquiterpene lactones (Bohlman et al., 1977), sesquiterpene acids (Ceccherelli et al., 1988; Geissman & Toribio, 1967). The ilicic acid is one of the main components of the dichloromethane extract of the Inula Viscosa (L) Aiton or Dittrichia Viscosa (L) Greuter]. The literature report one article on the transformation of the ilicic acid (Barrero et al., 2009). In order to prepare products with high added value, that can be used in the pharmacology and cosmetics industry, we have studied the reactivity of this acid. Thus, from the ilicic acid, we have prepared by the method of Barrero et al. (2009), 2-(4a,8-Dimethyl-1, 2,3,4,4 a,5,6,7- octahydro-naphthalene -2-yl)-acrylic acid methyl ester. The epoxidation of the latter by metachloroperbenzoic acid (mCPBA), followed by the opening of the epoxide obtained by Bi(OTf)3 leads to 2- (3a,8a-Dimethyl-4-oxo-decahydro-azulene-6- yl)-acrylic acid methyl ester with a yield of 50% (see figure 3). The structure of this new derivative (I) of ilicic acid was confirmed by its single-crystal X-ray structure. The asymmetric unit contains two crystallographically independent molecules (Fig.1). Each molecule is built up from two fused five and seven-membered rings.The seven membered ring shows a chair conformation as indicated by Cremer & Pople (1975) puckering parameters QT = 0.7918 (48) Å, θ2 = 38.41 (34)°, φ2 = -33.23 (58)° and φ3 = 171.04 (52)° for the ring (C21, C22···C27)and QT = 0.8658 (51) Å, θ2 = 39.31 (31)°, φ2 = -32.67 (53)° and φ3 = 173.97 (45)° for the other ring (C11,C12···C17). In the first molecule (C11 to C151), the dihedral angle between the rings is 31.7 (3)°. The corresponding value in the second molecule (C21 to C251) is 47.7 (7)°. In the crystal structure, the molecules are linked by C—H···O intermolecular hydrogen bonds into a chains along the a axis (Fig.2).

Experimental

To 3 g (12 mmol) of 2-(4a,8-Dimethyl-1,2,3,4,4a,5,6,7-octahydro- naphthalen-2-yl)-acrylic acid methyl ester dissolved in 40 ml of dichloromethane was added one equivalent of m-chloroperbenzoic acid at 70%. The reaction mixture was stirred at room temperature for 3 h, then treated three times with a solution of sodium bisulfite at 10%. The organic layer was then washed with distilled water three times until neutralization, dried over sodium sulfate, filtered and concentrated under reduced pressure. The residue obtained was chromatographed on silica gel eluting with hexane/ ethyl acetate (98/2) to give quantitatively the corresponding epoxide. 2.5 g (9.4 mmol) of this epoxyde is dissolved with 5% Bi(OTf)3 in 20 ml of dichloromethane. The reaction mixture was left stirring for a period of half an hour and then treated with 10 ml of a solution of sodium bicarbonate to 10%. The organic layer was dried filtered and concentrated under reduced pressure. Chromatography on silica gel, eluting with hexane/ethyl acetate (98/2) of the residue obtained, allowed us to obtain 1.24 g (4.71 mmol) of 2-(3a, 8a-dimethyl-4-oxo-azulene-decahydro-6-yl)-acrylic acid methyl ester. The title compound was recrystallized in dichloromethane.

Refinement

All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl), 0.97 Å (methylene), 0.98Å (methine) and 0.93 Å (C=CH2) with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(Cmethyl). In the absence of significant anomalous scattering, the absolute configuration could not be reliably determined, and thus any references to the Flack parameter were removed.

Carbons C18/C19/C20 and C28/C29/C30 of the five membered rings are disordered over two positions. For both molecules, the site occupancy factor of each conformation were refined while restraining their sum to unity. The occupancy factors were found to be equal to 0.53/0.47 for the first molecule, and 0.83/0.17 for the second molecule. Similarity restraints (SAME) were applied to the chemically equivalent bond lengths and angles involving all disordered atoms, while disordered atoms were restrained to have similar atomic displacement parameters within a tolerance s.u. of 0.01 Å2 as those of neighbouring atoms.

The structure is a pseudo-merohedral twin with twin law (1 0 0 0 -1 0 0 0 -1) and twin parameter 0.503 (3).

Figures

Fig. 1.

Fig. 1.

: Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

: packing view showing the C–H···O hydrogen bonds as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity. [Symmetry codes: (i) x + 1, y, z; (ii) x, y - 1, z.].

Fig. 3.

Fig. 3.

: Synthesis of the title compound.

Crystal data

C16H24O3 F(000) = 576
Mr = 264.35 Dx = 1.194 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.7107 Å
Hall symbol: P 2yb Cell parameters from 3361 reflections
a = 6.6954 (3) Å θ = 3.6–29.2°
b = 6.9447 (3) Å µ = 0.08 mm1
c = 31.6168 (18) Å T = 180 K
β = 90.095 (7)° Block, colourless
V = 1470.10 (12) Å3 0.33 × 0.23 × 0.15 mm
Z = 4

Data collection

Agilent Xcalibur Eos Gemini ultra diffractometer 5575 independent reflections
Radiation source: Enhance (Mo) X-ray Source 4990 reflections with I > 2σ(I)
graphite Rint = 0.020
Detector resolution: 16.1978 pixels mm-1 θmax = 26.4°, θmin = 3.6°
ω scans h = −8→8
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) k = −8→8
Tmin = 0.843, Tmax = 1.000 l = −36→39
9032 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.058P)2 + 0.0579P] where P = (Fo2 + 2Fc2)/3
5575 reflections (Δ/σ)max = 0.011
356 parameters Δρmax = 0.14 e Å3
19 restraints Δρmin = −0.19 e Å3

Special details

Experimental. The crystal is twinned by pseudo-merohedry. The unit cell is monoclinic but it emulates an orthorhombic P 21 21 2 cell.Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. CrysAlisPro (Agilent,2010)
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O11 −0.3396 (6) 0.7937 (7) 0.78385 (10) 0.0491 (9)
O12 −0.1779 (6) 0.7707 (7) 0.72197 (8) 0.0441 (9)
O13 0.0462 (8) 0.4408 (6) 0.90038 (11) 0.0603 (11)
C11 0.0245 (7) 0.7490 (7) 0.83087 (10) 0.0320 (10)
H11 −0.1000 0.6868 0.8397 0.038*
C12 0.1966 (8) 0.6169 (6) 0.84329 (11) 0.0370 (11)
H12A 0.3233 0.6815 0.8388 0.044*
H12B 0.1943 0.5008 0.8262 0.044*
C13 0.1702 (9) 0.5650 (7) 0.89132 (14) 0.0376 (11)
C16 0.0506 (8) 0.9418 (7) 0.90041 (11) 0.0344 (10)
H16A 0.0105 1.0672 0.9109 0.041*
H16B −0.0453 0.8491 0.9111 0.041*
C17 0.0323 (8) 0.9457 (7) 0.85143 (11) 0.0371 (11)
H17A −0.0878 1.0159 0.8439 0.045*
H17B 0.1453 1.0158 0.8400 0.045*
C14 0.2954 (9) 0.6686 (7) 0.92227 (13) 0.0375 (11)
C15 0.2545 (8) 0.8936 (7) 0.91989 (13) 0.0365 (11)
C18A 0.2343 (11) 0.9472 (10) 0.96834 (13) 0.068 (2) 0.53
H18A 0.3233 1.0532 0.9750 0.082* 0.53
H18B 0.0986 0.9879 0.9743 0.082* 0.53
C19A 0.2859 (15) 0.7758 (13) 0.99513 (19) 0.0438 (13) 0.53
H19A 0.2078 0.7746 1.0210 0.053* 0.53
H19B 0.4267 0.7756 1.0024 0.053* 0.53
C20A 0.2344 (11) 0.6059 (9) 0.96745 (13) 0.0562 (16) 0.53
H20A 0.0926 0.5778 0.9688 0.067* 0.53
H20B 0.3082 0.4924 0.9761 0.067* 0.53
C18B 0.2343 (11) 0.9472 (10) 0.96834 (13) 0.068 (2) 0.47
H18C 0.3638 0.9789 0.9802 0.082* 0.47
H18D 0.1462 1.0569 0.9719 0.082* 0.47
C19B 0.1550 (14) 0.7852 (12) 0.9882 (2) 0.0438 (13) 0.47
H19C 0.0105 0.7874 0.9861 0.053* 0.47
H19D 0.1911 0.7858 1.0179 0.053* 0.47
C20B 0.2344 (11) 0.6059 (9) 0.96745 (13) 0.0562 (16) 0.47
H20C 0.1324 0.5068 0.9664 0.067* 0.47
H20D 0.3488 0.5565 0.9828 0.067* 0.47
C111 0.0153 (7) 0.7762 (8) 0.78377 (12) 0.0350 (10)
C112 0.1773 (8) 0.7999 (10) 0.75949 (14) 0.0527 (14)
H11A 0.1632 0.8188 0.7305 0.063*
H11B 0.3039 0.7974 0.7716 0.063*
C113 −0.1814 (7) 0.7805 (8) 0.76432 (12) 0.0340 (10)
C114 −0.3611 (8) 0.7761 (8) 0.69985 (12) 0.0453 (11)
H11C −0.4307 0.8930 0.7066 0.068*
H11D −0.4413 0.6676 0.7079 0.068*
H11E −0.3359 0.7715 0.6700 0.068*
C141 0.5147 (9) 0.6146 (9) 0.91621 (15) 0.0562 (16)
H14A 0.5558 0.6476 0.8880 0.084*
H14B 0.5311 0.4786 0.9205 0.084*
H14C 0.5951 0.6835 0.9363 0.084*
C151 0.4187 (10) 1.0125 (9) 0.90107 (18) 0.0537 (15)
H15A 0.3809 1.1459 0.9015 0.081*
H15B 0.4417 0.9726 0.8724 0.081*
H15C 0.5386 0.9954 0.9173 0.081*
O21 −0.3368 (5) 0.2891 (7) 0.71830 (9) 0.0455 (8)
O22 −0.1755 (6) 0.3099 (7) 0.78059 (8) 0.0435 (8)
O23 0.0557 (8) 0.6369 (6) 0.60233 (12) 0.0710 (13)
C21 0.0213 (7) 0.3281 (7) 0.67099 (11) 0.0336 (10)
H21 −0.1050 0.3890 0.6628 0.040*
C22 0.1921 (8) 0.4596 (6) 0.65588 (14) 0.0435 (12)
H22A 0.1943 0.5748 0.6732 0.052*
H22B 0.3183 0.3933 0.6598 0.052*
C23 0.1736 (7) 0.5141 (6) 0.61251 (15) 0.0367 (10)
C26 0.0504 (8) 0.1303 (7) 0.60083 (14) 0.0422 (11)
H26A −0.0491 0.2194 0.5902 0.051*
H26B 0.0119 0.0029 0.5913 0.051*
C27 0.0351 (8) 0.1312 (7) 0.64743 (13) 0.0423 (12)
H27A 0.1503 0.0631 0.6585 0.051*
H27B −0.0820 0.0565 0.6551 0.051*
C24 0.2925 (8) 0.4082 (7) 0.57727 (13) 0.0343 (10)
C25 0.2532 (7) 0.1810 (6) 0.57876 (14) 0.0364 (11)
C28A 0.2445 (10) 0.1255 (7) 0.53289 (15) 0.0547 (15) 0.83
H28A 0.3450 0.0283 0.5271 0.066* 0.83
H28B 0.1146 0.0707 0.5266 0.066* 0.83
C29A 0.2795 (15) 0.2957 (12) 0.50553 (16) 0.0775 (19) 0.83
H29A 0.4178 0.3013 0.4965 0.093* 0.83
H29B 0.1943 0.2918 0.4807 0.093* 0.83
C30A 0.2296 (11) 0.4625 (8) 0.53251 (15) 0.0566 (17) 0.83
H30A 0.0874 0.4888 0.5314 0.068* 0.83
H30B 0.3010 0.5763 0.5231 0.068* 0.83
C28B 0.2445 (10) 0.1255 (7) 0.53289 (15) 0.0547 (15) 0.17
H28C 0.3776 0.1080 0.5214 0.066* 0.17
H28D 0.1693 0.0073 0.5291 0.066* 0.17
C29B 0.143 (5) 0.289 (3) 0.5125 (7) 0.0775 (19) 0.17
H29C 0.1674 0.2891 0.4822 0.093* 0.17
H29D −0.0002 0.2830 0.5173 0.093* 0.17
C30B 0.2296 (11) 0.4625 (8) 0.53251 (15) 0.0566 (17) 0.17
H30C 0.1315 0.5653 0.5333 0.068* 0.17
H30D 0.3443 0.5067 0.5165 0.068* 0.17
C211 0.0190 (7) 0.3028 (7) 0.71832 (11) 0.0325 (10)
C212 0.1757 (7) 0.2744 (9) 0.74169 (12) 0.0445 (12)
H21A 0.3016 0.2685 0.7293 0.053*
H21B 0.1621 0.2601 0.7708 0.053*
C213 −0.1856 (7) 0.2982 (7) 0.73821 (13) 0.0333 (9)
C214 −0.3691 (8) 0.2993 (11) 0.80196 (13) 0.0582 (15)
H21C −0.4298 0.1767 0.7963 0.087*
H21D −0.4542 0.4003 0.7917 0.087*
H21E −0.3503 0.3138 0.8319 0.087*
C241 0.5158 (7) 0.4632 (8) 0.58597 (18) 0.0523 (14)
H24A 0.5556 0.4133 0.6130 0.078*
H24B 0.5295 0.6008 0.5860 0.078*
H24C 0.5990 0.4091 0.5643 0.078*
C251 0.4216 (10) 0.0690 (8) 0.6025 (2) 0.0612 (16)
H25A 0.5398 0.0658 0.5854 0.092*
H25B 0.3779 −0.0603 0.6081 0.092*
H25C 0.4506 0.1325 0.6288 0.092*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O11 0.0296 (16) 0.068 (2) 0.0497 (16) 0.0131 (19) −0.0007 (16) −0.0057 (19)
O12 0.0329 (16) 0.067 (2) 0.0324 (11) −0.0016 (19) −0.0084 (14) 0.0003 (16)
O13 0.069 (3) 0.045 (2) 0.067 (2) −0.020 (2) −0.003 (2) 0.0090 (18)
C11 0.026 (2) 0.040 (3) 0.0300 (17) −0.0028 (19) 0.0027 (16) −0.0067 (17)
C12 0.046 (3) 0.039 (3) 0.0263 (16) 0.014 (3) −0.0010 (19) −0.0137 (17)
C13 0.054 (3) 0.0261 (19) 0.0330 (18) 0.006 (2) 0.001 (2) 0.0034 (15)
C16 0.037 (2) 0.038 (3) 0.0281 (18) 0.006 (2) 0.0088 (19) −0.0104 (17)
C17 0.043 (3) 0.037 (2) 0.0315 (18) 0.009 (2) 0.0012 (19) 0.0118 (18)
C14 0.039 (3) 0.038 (3) 0.0361 (19) −0.001 (3) 0.003 (2) 0.0045 (18)
C15 0.043 (3) 0.043 (2) 0.0235 (16) −0.004 (2) 0.0041 (18) −0.0050 (16)
C18A 0.077 (5) 0.103 (4) 0.0249 (19) 0.025 (4) −0.011 (2) −0.004 (2)
C19A 0.049 (3) 0.056 (3) 0.026 (2) 0.000 (4) −0.003 (2) 0.003 (3)
C20A 0.069 (4) 0.066 (4) 0.034 (2) 0.002 (3) 0.001 (3) 0.000 (2)
C18B 0.077 (5) 0.103 (4) 0.0249 (19) 0.025 (4) −0.011 (2) −0.004 (2)
C19B 0.049 (3) 0.056 (3) 0.026 (2) 0.000 (4) −0.003 (2) 0.003 (3)
C20B 0.069 (4) 0.066 (4) 0.034 (2) 0.002 (3) 0.001 (3) 0.000 (2)
C111 0.029 (2) 0.034 (2) 0.042 (2) 0.0037 (19) −0.0016 (18) −0.007 (2)
C112 0.034 (3) 0.083 (4) 0.0409 (18) 0.019 (3) 0.008 (2) −0.006 (2)
C113 0.034 (2) 0.035 (2) 0.0333 (17) −0.002 (2) 0.0013 (19) −0.0075 (19)
C114 0.043 (3) 0.040 (2) 0.053 (2) −0.012 (2) −0.014 (2) 0.003 (2)
C141 0.061 (4) 0.060 (4) 0.047 (2) 0.026 (3) −0.003 (3) 0.002 (3)
C151 0.052 (3) 0.052 (3) 0.057 (3) −0.004 (3) −0.004 (3) 0.008 (2)
O21 0.0226 (14) 0.067 (2) 0.0464 (15) 0.0066 (18) 0.0044 (14) 0.0054 (18)
O22 0.0311 (15) 0.061 (2) 0.0383 (12) 0.0060 (18) 0.0117 (14) 0.0011 (16)
O23 0.096 (3) 0.0341 (18) 0.083 (2) 0.030 (2) 0.035 (3) 0.0178 (18)
C21 0.0238 (19) 0.031 (2) 0.046 (2) −0.0050 (18) 0.0084 (18) −0.0005 (17)
C22 0.038 (3) 0.027 (2) 0.065 (3) −0.003 (2) 0.015 (2) −0.006 (2)
C23 0.030 (2) 0.0210 (18) 0.059 (2) −0.0053 (18) 0.014 (2) −0.0034 (16)
C26 0.039 (3) 0.024 (2) 0.064 (3) −0.009 (2) 0.008 (2) −0.0007 (19)
C27 0.038 (3) 0.031 (2) 0.057 (2) −0.013 (2) 0.014 (2) −0.016 (2)
C24 0.036 (2) 0.028 (2) 0.038 (2) 0.002 (2) 0.012 (2) 0.0003 (16)
C25 0.039 (3) 0.0191 (18) 0.051 (2) 0.0026 (19) 0.012 (2) −0.0040 (16)
C28A 0.067 (4) 0.033 (2) 0.064 (3) 0.000 (2) 0.005 (3) −0.025 (2)
C29A 0.106 (5) 0.084 (5) 0.043 (3) 0.007 (5) 0.002 (3) −0.004 (3)
C30A 0.073 (4) 0.044 (3) 0.052 (2) 0.017 (3) 0.006 (3) 0.018 (2)
C28B 0.067 (4) 0.033 (2) 0.064 (3) 0.000 (2) 0.005 (3) −0.025 (2)
C29B 0.106 (5) 0.084 (5) 0.043 (3) 0.007 (5) 0.002 (3) −0.004 (3)
C30B 0.073 (4) 0.044 (3) 0.052 (2) 0.017 (3) 0.006 (3) 0.018 (2)
C211 0.026 (2) 0.037 (2) 0.0346 (19) 0.002 (2) 0.0069 (18) −0.007 (2)
C212 0.026 (2) 0.069 (3) 0.0380 (17) 0.017 (2) 0.0119 (19) 0.000 (2)
C213 0.024 (2) 0.029 (2) 0.047 (2) 0.0027 (19) 0.0126 (19) 0.0012 (19)
C214 0.036 (3) 0.091 (4) 0.048 (2) 0.000 (3) 0.027 (2) −0.002 (3)
C241 0.034 (3) 0.045 (3) 0.078 (3) −0.005 (2) 0.018 (3) 0.000 (3)
C251 0.048 (3) 0.032 (3) 0.104 (4) 0.025 (2) 0.006 (3) −0.009 (2)

Geometric parameters (Å, °)

O11—C113 1.229 (6) O21—C213 1.193 (6)
O12—C113 1.341 (4) O22—C213 1.344 (4)
O12—C114 1.413 (6) O22—C214 1.464 (6)
O13—C13 1.231 (7) O23—C23 1.206 (7)
C11—C111 1.502 (5) C21—C211 1.507 (5)
C11—C17 1.513 (6) C21—C22 1.540 (6)
C11—C12 1.524 (6) C21—C27 1.560 (6)
C11—H11 0.9800 C21—H21 0.9800
C12—C13 1.571 (5) C22—C23 1.428 (6)
C12—H12A 0.9700 C22—H22A 0.9700
C12—H12B 0.9700 C22—H22B 0.9700
C13—C14 1.475 (7) C23—C24 1.554 (6)
C16—C15 1.535 (7) C26—C27 1.477 (6)
C16—C17 1.554 (5) C26—C25 1.567 (7)
C16—H16A 0.9700 C26—H26A 0.9700
C16—H16B 0.9700 C26—H26B 0.9700
C17—H17A 0.9700 C27—H27A 0.9700
C17—H17B 0.9700 C27—H27B 0.9700
C14—C141 1.528 (8) C24—C30A 1.524 (7)
C14—C20A 1.548 (6) C24—C241 1.567 (8)
C14—C15 1.588 (6) C24—C25 1.600 (6)
C15—C151 1.498 (8) C25—C28A 1.502 (6)
C15—C18A 1.582 (5) C25—C251 1.563 (8)
C18A—C19A 1.501 (10) C28A—C29A 1.484 (9)
C18A—H18A 0.9700 C28A—H28A 0.9700
C18A—H18B 0.9700 C28A—H28B 0.9700
C19A—C20A 1.509 (10) C29A—C30A 1.477 (9)
C19A—H19A 0.9700 C29A—H29A 0.9700
C19A—H19B 0.9700 C29A—H29B 0.9700
C20A—H20A 0.9700 C30A—H30A 0.9700
C20A—H20B 0.9700 C30A—H30B 0.9700
C19B—H19C 0.9700 C29B—H29C 0.9700
C19B—H19D 0.9700 C29B—H29D 0.9700
C111—C112 1.339 (7) C211—C212 1.299 (7)
C111—C113 1.454 (7) C211—C213 1.508 (6)
C112—H11A 0.9300 C212—H21A 0.9300
C112—H11B 0.9300 C212—H21B 0.9300
C114—H11C 0.9600 C214—H21C 0.9600
C114—H11D 0.9600 C214—H21D 0.9600
C114—H11E 0.9600 C214—H21E 0.9600
C141—H14A 0.9600 C241—H24A 0.9600
C141—H14B 0.9600 C241—H24B 0.9600
C141—H14C 0.9600 C241—H24C 0.9600
C151—H15A 0.9600 C251—H25A 0.9600
C151—H15B 0.9600 C251—H25B 0.9600
C151—H15C 0.9600 C251—H25C 0.9600
C113—O12—C114 118.6 (4) C213—O22—C214 114.3 (4)
C111—C11—C17 108.3 (4) C211—C21—C22 112.6 (4)
C111—C11—C12 111.2 (3) C211—C21—C27 111.9 (4)
C17—C11—C12 114.0 (4) C22—C21—C27 109.1 (3)
C111—C11—H11 107.7 C211—C21—H21 107.7
C17—C11—H11 107.7 C22—C21—H21 107.7
C12—C11—H11 107.7 C27—C21—H21 107.7
C11—C12—C13 107.6 (4) C23—C22—C21 113.0 (4)
C11—C12—H12A 110.2 C23—C22—H22A 109.0
C13—C12—H12A 110.2 C21—C22—H22A 109.0
C11—C12—H12B 110.2 C23—C22—H22B 109.0
C13—C12—H12B 110.2 C21—C22—H22B 109.0
H12A—C12—H12B 108.5 H22A—C22—H22B 107.8
O13—C13—C14 124.8 (4) O23—C23—C22 120.0 (4)
O13—C13—C12 117.5 (5) O23—C23—C24 118.6 (4)
C14—C13—C12 117.7 (4) C22—C23—C24 121.2 (4)
C15—C16—C17 118.3 (4) C27—C26—C25 120.2 (4)
C15—C16—H16A 107.7 C27—C26—H26A 107.3
C17—C16—H16A 107.7 C25—C26—H26A 107.3
C15—C16—H16B 107.7 C27—C26—H26B 107.3
C17—C16—H16B 107.7 C25—C26—H26B 107.3
H16A—C16—H16B 107.1 H26A—C26—H26B 106.9
C11—C17—C16 114.6 (4) C26—C27—C21 119.0 (4)
C11—C17—H17A 108.6 C26—C27—H27A 107.6
C16—C17—H17A 108.6 C21—C27—H27A 107.6
C11—C17—H17B 108.6 C26—C27—H27B 107.6
C16—C17—H17B 108.6 C21—C27—H27B 107.6
H17A—C17—H17B 107.6 H27A—C27—H27B 107.0
C13—C14—C141 110.1 (4) C30A—C24—C23 114.0 (4)
C13—C14—C20A 109.0 (4) C30A—C24—C241 111.5 (4)
C141—C14—C20A 107.5 (5) C23—C24—C241 104.3 (4)
C13—C14—C15 110.5 (4) C30A—C24—C25 103.1 (4)
C141—C14—C15 113.6 (5) C23—C24—C25 111.2 (4)
C20A—C14—C15 106.0 (4) C241—C24—C25 113.0 (4)
C151—C15—C16 111.9 (4) C28A—C25—C251 111.4 (4)
C151—C15—C18A 108.5 (5) C28A—C25—C26 109.8 (4)
C16—C15—C18A 105.1 (4) C251—C25—C26 107.4 (4)
C151—C15—C14 115.8 (5) C28A—C25—C24 103.4 (4)
C16—C15—C14 112.8 (4) C251—C25—C24 112.8 (5)
C18A—C15—C14 101.6 (4) C26—C25—C24 112.2 (4)
C19A—C18A—C15 109.9 (5) C29A—C28A—C25 110.6 (4)
C19A—C18A—H18A 109.7 C29A—C28A—H28A 109.5
C15—C18A—H18A 109.7 C25—C28A—H28A 109.5
C19A—C18A—H18B 109.7 C29A—C28A—H28B 109.5
C15—C18A—H18B 109.7 C25—C28A—H28B 109.5
H18A—C18A—H18B 108.2 H28A—C28A—H28B 108.1
C18A—C19A—C20A 103.9 (5) C30A—C29A—C28A 104.6 (4)
C18A—C19A—H19A 111.0 C30A—C29A—H29A 110.8
C20A—C19A—H19A 111.0 C28A—C29A—H29A 110.8
C18A—C19A—H19B 111.0 C30A—C29A—H29B 110.8
C20A—C19A—H19B 111.0 C28A—C29A—H29B 110.8
H19A—C19A—H19B 109.0 H29A—C29A—H29B 108.9
C19A—C20A—C14 104.8 (5) C29A—C30A—C24 106.2 (5)
C19A—C20A—H20A 110.8 C29A—C30A—H30A 110.5
C14—C20A—H20A 110.8 C24—C30A—H30A 110.5
C19A—C20A—H20B 110.8 C29A—C30A—H30B 110.5
C14—C20A—H20B 110.8 C24—C30A—H30B 110.5
H20A—C20A—H20B 108.9 H30A—C30A—H30B 108.7
H19C—C19B—H19D 108.2 H29C—C29B—H29D 108.8
C112—C111—C113 119.3 (4) C212—C211—C21 125.1 (4)
C112—C111—C11 123.4 (4) C212—C211—C213 119.6 (3)
C113—C111—C11 117.3 (4) C21—C211—C213 115.2 (4)
C111—C112—H11A 120.0 C211—C212—H21A 120.0
C111—C112—H11B 120.0 C211—C212—H21B 120.0
H11A—C112—H11B 120.0 H21A—C212—H21B 120.0
O11—C113—O12 121.3 (4) O21—C213—O22 124.9 (4)
O11—C113—C111 124.7 (3) O21—C213—C211 123.5 (3)
O12—C113—C111 113.9 (4) O22—C213—C211 111.6 (4)
O12—C114—H11C 109.5 O22—C214—H21C 109.5
O12—C114—H11D 109.5 O22—C214—H21D 109.5
H11C—C114—H11D 109.5 H21C—C214—H21D 109.5
O12—C114—H11E 109.5 O22—C214—H21E 109.5
H11C—C114—H11E 109.5 H21C—C214—H21E 109.5
H11D—C114—H11E 109.5 H21D—C214—H21E 109.5
C14—C141—H14A 109.5 C24—C241—H24A 109.5
C14—C141—H14B 109.5 C24—C241—H24B 109.5
H14A—C141—H14B 109.5 H24A—C241—H24B 109.5
C14—C141—H14C 109.5 C24—C241—H24C 109.5
H14A—C141—H14C 109.5 H24A—C241—H24C 109.5
H14B—C141—H14C 109.5 H24B—C241—H24C 109.5
C15—C151—H15A 109.5 C25—C251—H25A 109.5
C15—C151—H15B 109.5 C25—C251—H25B 109.5
H15A—C151—H15B 109.5 H25A—C251—H25B 109.5
C15—C151—H15C 109.5 C25—C251—H25C 109.5
H15A—C151—H15C 109.5 H25A—C251—H25C 109.5
H15B—C151—H15C 109.5 H25B—C251—H25C 109.5

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C112—H11B···O11i 0.93 2.42 3.325 (7) 165
C212—H21A···O21i 0.93 2.45 3.348 (6) 162
C26—H26B···O23ii 0.97 2.58 3.427 (6) 146

Symmetry codes: (i) x+1, y, z; (ii) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2451).

References

  1. Agilent (2010). CrysAlis PRO Agilent Technologies Ltd, Yarnton, Oxfordshire, England.
  2. Azoulay, P., Reynier, J. P., Balansard, G., Gasquet, M. & Timon-David, P. (1986). Pharm. Acta Helv. 61, 345–352. [PubMed]
  3. Barrero, A. F., Herrador, M. M., Arteaga, J. & Catalán, V. (2009). Eur. J. Org. Chem. pp. 3589–3594.
  4. Bohlman, F., Czerson, H. & Schoneweib, S. (1977). Chem. Ber. 110, 1330–1334.
  5. Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  6. Ceccherelli, P., Curini, M. & Marcotullio, M. C. (1988). J. Nat. Prod. 51, 1006–1009. [DOI] [PubMed]
  7. Chiappini, I., Fardella, G., Menghini, A. & Rossi, C. (1982). Planta Med. 44, 159–161. [DOI] [PubMed]
  8. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  9. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  10. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  11. Geissman, T. A. & Toribio, F. P. (1967). Phytochemistry, 6, 1563–1567.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Shtacher, G. & Kasshman, Y. (1970). J. Med. Chem. 13, 1221–1223. [DOI] [PubMed]
  14. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811029928/om2451sup1.cif

e-67-o2187-sup1.cif (38.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811029928/om2451Isup2.hkl

e-67-o2187-Isup2.hkl (267.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811029928/om2451Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES