Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jul 30;67(Pt 8):o2197. doi: 10.1107/S1600536811030121

(E)-Methyl 3-(1H-indol-2-yl)acrylate

Rui-Bin Hou a, Dong-Feng Li a,*
PMCID: PMC3213627  PMID: 22091204

Abstract

The title compound, C12H11NO2, is close to being planar (r.m.s. deviation for the non-H atoms = 0.033 Å). In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds, generating C(7) chains running along the b axis. A weak C—H⋯O interaction helps to establish the packing.

Related literature

For background literature related to indoles in medicinal chemistry, see: Zeynep et al. (2005). For details of the synthesis, see García-Rubia et al. (2010).graphic file with name e-67-o2197-scheme1.jpg

Experimental

Crystal data

  • C12H11NO2

  • M r = 201.22

  • Orthorhombic, Inline graphic

  • a = 7.735 (5) Å

  • b = 11.324 (5) Å

  • c = 23.236 (10) Å

  • V = 2035.4 (17) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.39 × 0.27 × 0.22 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995) T min = 0.966, T max = 0.980

  • 18445 measured reflections

  • 2326 independent reflections

  • 1555 reflections with I > 2σ(I)

  • R int = 0.065

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049

  • wR(F 2) = 0.133

  • S = 1.04

  • 2326 reflections

  • 137 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811030121/hb5951sup1.cif

e-67-o2197-sup1.cif (14.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811030121/hb5951Isup2.hkl

e-67-o2197-Isup2.hkl (114.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811030121/hb5951Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.98 1.93 2.900 (2) 174
C5—H5⋯O2ii 0.93 2.57 3.390 (3) 147

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors acknowledge financial support from the National Natural Science Foundation of Jilin Province (grant No. 20101548).

supplementary crystallographic information

Comment

Indole derivatives constitute an important class of therapeutic agents in medicinal chemistry including anticancer, antioxidant, antirheumatoidal and anti-HIVv (e.g. Zeynep et al., 2005). We recently synthesized some indole derivatives as histone deacetylase (HDAC) inhibitors with the precursor. In this paper, we report the crystal structure of the title compound, (I).

The molecular structure of title compound, C12H13O2N, as shown in Fig. 1, all bond lengths and angles are in the normal ranges. All non-hydrogen atoms are nearly coplanar. In the crystal, the intermolecular N—H···O hydrogen bonds link the molecules into chains along b direction.

Experimental

The title compound was prepared according to the literature method (García-Rubia et al., 2010). Colourless blocks of (I) were prepared by slow evaporation of a solution in a mixture of dichloromethane and petroleum (60–90 °C) at room temperature.

Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93 and 0.97 Å) and were included in the refinement in the riding model with Uiso(H) = 1.5 or 1.2 Ueq(C). The N-bound H atom was located from a difference map and refined with the distance restraints N—H = 0.90 Å and Uiso(H) = 1.5 Ueq(N).

Figures

Fig. 1.

Fig. 1.

The title compound, with displacement ellipsoids of non-H atoms drawn at the 30% probalility level.

Crystal data

C12H11NO2 F(000) = 848
Mr = 201.22 Dx = 1.313 Mg m3
Orthorhombic, Pbca Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 10451 reflections
a = 7.735 (5) Å θ = 3.2–27.5°
b = 11.324 (5) Å µ = 0.09 mm1
c = 23.236 (10) Å T = 296 K
V = 2035.4 (17) Å3 Block, colorless
Z = 8 0.39 × 0.27 × 0.22 mm

Data collection

Rigaku R-AXIS RAPID diffractometer 2326 independent reflections
Radiation source: fine-focus sealed tube 1555 reflections with I > 2σ(I)
graphite Rint = 0.065
ω scans θmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) h = −10→10
Tmin = 0.966, Tmax = 0.980 k = −14→13
18445 measured reflections l = −30→29

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0668P)2 + 0.2072P] where P = (Fo2 + 2Fc2)/3
2326 reflections (Δ/σ)max = 0.003
137 parameters Δρmax = 0.14 e Å3
1 restraint Δρmin = −0.19 e Å3

Special details

Experimental. (See detailed section in the paper)
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.5285 (2) 0.89360 (14) 0.82265 (7) 0.0413 (4)
C2 0.6101 (3) 0.86472 (16) 0.77057 (7) 0.0505 (5)
H2 0.6292 0.9224 0.7428 0.061*
C3 0.6611 (3) 0.75051 (17) 0.76123 (8) 0.0571 (5)
H3 0.7158 0.7310 0.7269 0.068*
C4 0.6323 (3) 0.66264 (17) 0.80249 (9) 0.0592 (6)
H4 0.6662 0.5855 0.7946 0.071*
C5 0.5548 (3) 0.68769 (16) 0.85450 (8) 0.0511 (5)
H5 0.5374 0.6293 0.8821 0.061*
C6 0.5037 (2) 0.80400 (14) 0.86409 (7) 0.0399 (4)
C7 0.4614 (2) 0.99847 (15) 0.84673 (7) 0.0448 (4)
H7 0.4585 1.0721 0.8290 0.054*
C8 0.4012 (2) 0.97292 (14) 0.90079 (7) 0.0401 (4)
C9 0.3182 (2) 1.05130 (14) 0.94093 (7) 0.0421 (4)
H9 0.3052 1.1292 0.9290 0.051*
C10 0.2580 (2) 1.02608 (14) 0.99292 (7) 0.0422 (4)
H10 0.2693 0.9498 1.0072 0.051*
C11 0.1744 (2) 1.11639 (13) 1.02804 (7) 0.0397 (4)
C12 0.0416 (3) 1.15364 (17) 1.11785 (8) 0.0573 (5)
H12A 0.1057 1.2260 1.1206 0.086*
H12B 0.0332 1.1180 1.1552 0.086*
H12C −0.0723 1.1699 1.1035 0.086*
N1 0.4262 (2) 0.85400 (11) 0.91135 (6) 0.0409 (4)
H1 0.3997 0.8130 0.9473 0.061*
O1 0.1477 (2) 1.21728 (10) 1.01398 (5) 0.0635 (4)
O2 0.12888 (17) 1.07412 (10) 1.07924 (5) 0.0484 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0440 (11) 0.0430 (9) 0.0370 (8) −0.0047 (7) −0.0065 (7) −0.0006 (7)
C2 0.0554 (13) 0.0565 (11) 0.0394 (9) −0.0110 (9) −0.0013 (8) −0.0037 (8)
C3 0.0526 (13) 0.0653 (12) 0.0533 (11) −0.0077 (10) 0.0060 (9) −0.0191 (9)
C4 0.0546 (14) 0.0508 (11) 0.0724 (13) 0.0036 (9) −0.0002 (10) −0.0176 (10)
C5 0.0531 (12) 0.0391 (9) 0.0609 (11) −0.0005 (8) −0.0035 (9) 0.0007 (8)
C6 0.0383 (10) 0.0387 (8) 0.0428 (9) −0.0013 (7) −0.0046 (7) −0.0006 (7)
C7 0.0548 (12) 0.0391 (8) 0.0405 (9) −0.0009 (8) −0.0044 (8) 0.0066 (7)
C8 0.0431 (10) 0.0365 (8) 0.0406 (9) −0.0011 (7) −0.0039 (7) 0.0014 (7)
C9 0.0462 (11) 0.0359 (8) 0.0443 (9) 0.0017 (7) −0.0035 (8) 0.0016 (7)
C10 0.0475 (11) 0.0351 (8) 0.0440 (9) 0.0019 (7) −0.0035 (8) 0.0037 (7)
C11 0.0442 (10) 0.0370 (9) 0.0377 (8) −0.0009 (7) −0.0048 (7) 0.0025 (7)
C12 0.0559 (13) 0.0626 (12) 0.0533 (11) 0.0067 (10) 0.0079 (9) −0.0038 (9)
N1 0.0468 (9) 0.0362 (7) 0.0396 (7) 0.0000 (6) 0.0003 (6) 0.0048 (6)
O1 0.0983 (12) 0.0409 (7) 0.0514 (8) 0.0168 (7) 0.0050 (7) 0.0073 (6)
O2 0.0572 (9) 0.0428 (6) 0.0452 (7) 0.0047 (6) 0.0062 (6) 0.0043 (5)

Geometric parameters (Å, °)

C1—C2 1.403 (2) C8—N1 1.383 (2)
C1—C7 1.412 (2) C8—C9 1.439 (2)
C1—C6 1.412 (2) C9—C10 1.326 (2)
C2—C3 1.370 (3) C9—H9 0.9300
C2—H2 0.9300 C10—C11 1.460 (2)
C3—C4 1.400 (3) C10—H10 0.9300
C3—H3 0.9300 C11—O1 1.2060 (19)
C4—C5 1.378 (3) C11—O2 1.330 (2)
C4—H4 0.9300 C12—O2 1.439 (2)
C5—C6 1.393 (2) C12—H12A 0.9600
C5—H5 0.9300 C12—H12B 0.9600
C6—N1 1.373 (2) C12—H12C 0.9600
C7—C8 1.371 (2) N1—H1 0.9772
C7—H7 0.9300
C2—C1—C7 134.69 (16) C7—C8—C9 127.99 (15)
C2—C1—C6 118.79 (16) N1—C8—C9 123.26 (15)
C7—C1—C6 106.51 (15) C10—C9—C8 127.91 (16)
C3—C2—C1 119.11 (17) C10—C9—H9 116.0
C3—C2—H2 120.4 C8—C9—H9 116.0
C1—C2—H2 120.4 C9—C10—C11 120.93 (15)
C2—C3—C4 121.12 (18) C9—C10—H10 119.5
C2—C3—H3 119.4 C11—C10—H10 119.5
C4—C3—H3 119.4 O1—C11—O2 122.54 (15)
C5—C4—C3 121.56 (17) O1—C11—C10 126.04 (15)
C5—C4—H4 119.2 O2—C11—C10 111.42 (13)
C3—C4—H4 119.2 O2—C12—H12A 109.5
C4—C5—C6 117.27 (17) O2—C12—H12B 109.5
C4—C5—H5 121.4 H12A—C12—H12B 109.5
C6—C5—H5 121.4 O2—C12—H12C 109.5
N1—C6—C5 129.91 (16) H12A—C12—H12C 109.5
N1—C6—C1 107.97 (14) H12B—C12—H12C 109.5
C5—C6—C1 122.13 (16) C6—N1—C8 108.71 (13)
C8—C7—C1 108.11 (15) C6—N1—H1 125.4
C8—C7—H7 125.9 C8—N1—H1 125.8
C1—C7—H7 125.9 C11—O2—C12 117.17 (13)
C7—C8—N1 108.70 (15)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···O1i 0.98 1.93 2.900 (2) 174
C5—H5···O2ii 0.93 2.57 3.390 (3) 147

Symmetry codes: (i) −x+1/2, y−1/2, z; (ii) x+1/2, −y+3/2, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5951).

References

  1. García-Rubia, A., Urones, B., Arrayás, R. G. & Carretero, J. C. (2010). Chem. Eur. J. 16, 9676–9685. [DOI] [PubMed]
  2. Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  3. Rigaku (1998). RAPID-AUTO Rigaku Corporation, Tokyo, Japan.
  4. Rigaku/MSC (2002). CrystalStructure Rigaku/MSC Inc., The Woodlands, Texas, USA.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Zeynep, A. A., Tulay, C. & Sibel, S. (2005). Med. Chem. Res. 14, 169–179.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811030121/hb5951sup1.cif

e-67-o2197-sup1.cif (14.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811030121/hb5951Isup2.hkl

e-67-o2197-Isup2.hkl (114.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811030121/hb5951Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES