Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jul 30;67(Pt 8):o2200. doi: 10.1107/S1600536811029904

Methyl 2-{[(3-methyl-5-oxo-1-phenyl-4,5-dihydro-1H-pyrazol-4-yl­idene)(thio­phen-2-yl)meth­yl]amino}-3-phenyl­propionate

Hualing Zhu a,*, Xinxin Zhao a, Zhan Wang a, Junjie Ren a, Miao Zhang a
PMCID: PMC3213630  PMID: 22091207

Abstract

In the title compound, C25H23N3O3S, an intra­molecular N—H⋯O inter­action generates an S(6) ring, which stabilizes the enamine–keto form of the compound. This S(6) ring and the pyrazole ring are essentially coplanar, making a dihedral angle of 1.49 (6)°. The bond lengths within the S(6) ring of the mol­ecule lie between classical single- and double-bond lengths, indicating extensive conjugation. The structure exhibits a thienyl-ring flip disorder, with occupancy factors in the ratio 64.7 (3):35.3 (3).

Related literature

The high biological activities of pyrazole derivatives are reported by Li et al. (2004) and Tan et al.(2009). The anti­bacterial and biological activities of amino acid esters are described by Xiong et al. (1993). Structures related to the title compound have been reported by Zhu et al. (2010) and Zhang et al. (2010).graphic file with name e-67-o2200-scheme1.jpg

Experimental

Crystal data

  • C25H23N3O3S

  • M r = 445.52

  • Monoclinic, Inline graphic

  • a = 6.649 (2) Å

  • b = 18.712 (6) Å

  • c = 9.349 (3) Å

  • β = 104.903 (5)°

  • V = 1124.0 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 113 K

  • 0.20 × 0.18 × 0.12 mm

Data collection

  • Rigaku Saturn724 CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2008) T min = 0.966, T max = 0.979

  • 11848 measured reflections

  • 2747 independent reflections

  • 2315 reflections with I > 2σ(I)

  • R int = 0.041

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034

  • wR(F 2) = 0.064

  • S = 0.98

  • 2747 reflections

  • 353 parameters

  • 215 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.20 e Å−3

  • Absolute structure: Flack (1983), 2401 Friedel pairs

  • Flack parameter: 0.05 (8)

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811029904/om2448sup1.cif

e-67-o2200-sup1.cif (26KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811029904/om2448Isup2.hkl

e-67-o2200-Isup2.hkl (132.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811029904/om2448Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H1⋯O1 0.88 1.93 2.668 (2) 141

Acknowledgments

The authors are grateful for financial support from the Spark Program, Foundation of Science and Technology Department of China (grant Nos. 09ZHXHNC07900 and 2010 GA610009).

supplementary crystallographic information

Comment

Pyrazole derivatives have drawn attentionfrom agricultural chemists for their high biological activity and low toxicity. They are widely used as pesticide, miticide and weed killers, and with the positional changes of the substituent group of pyrazole ring, more and more new pyrazole agricultural chemicals are synthesized and commercialized (Tan et al.,2009), so pyrazole derivatives have become one of the focal points to the creation of new agricultural chemicals. Amino acid esters also possess good antibacterial and biological activity (Xiong et al.,1993).

In the molecule of the title compound (Fig. 1), there is an intramolecular N3—H1···O1 interaction that generates a S(6) ring, and stabilizes the enamine–keto form of the compound. The dihedral angle between this S(6) ring and the pyrazole ring is 1.49 (6)°, indicating that they are essentially coplanar, as seen in Methyl 2-{[(1Z)-(3-methyl-5-oxo-1-phenyl-4,5-dihydro-1H-pyrazol-4- ylidene)(methyl)methyl]amino}-3-phenylpropanoate(1.50 (15)°; Zhu et al., 2010). The bond lengths within this part of the molecular lie between classical single-and double-bond lengths, indicating extensive conjugation. The S(6) ring makes dihedral angles of 54.29 (6)°,82.21 (22)° and 28.53 (6)° with the benzene ring of phenylalanine methyl ester, the thiazole ring and benzene ring bonded to pyrazole ring, respectively.

Atoms N3, C16, C24 and O2 are not coplanar, the torsion angle is 37.17 (22)°, similar to some other 4-acylpyrazolone Schiff Bases (Zhang et al., 2010). The bond lengths in this part of the molecule indicate that only C24—O2 is a classical double bond, other bonds are classical single bonds.

The structure exhibits a thienyl-ring flip disorder with the occupancy factors in the ratio 67/33.

Experimental

The title compound was synthesized by refluxing the mixture of 1-phenyl-3-methyl-4-(2-thenoyl)pyrazolone-5 (HPMTP) (10m mol) and phenylalanine methyl ester(10m mol) in ethanol (100 ml) over a steam bath for about 7 h, then the solution was cooled down to room temperature. After five days, pale yellow blocks were obtained and dried in the air. The product was recrystallized from ethanol which afforded pale yellow crystals suitable for X-ray analysis.

Refinement

The disorder model of thiazole ring was refined using the tools available in SHELXL97 (Sheldrick, 2008): DFIX for restraining distances, FLAT for constraining the thienyl rings to be planar, SIMU for restraining the same Uij and ISOR for restraining atoms to be approximately isotropic.

All H atoms were geometrically positioned and treated as riding on their parent atoms, with C—H = 0.93 Å for the aromatic, 0.96 Å for the methyl and N—H= 0.88 Å with U\ĩso\~(H)= 1.2 U\~eq\~C(aromatic, N) or, 1.5U\~eq\~C(methyl).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radii.

Crystal data

C25H23N3O3S F(000) = 468
Mr = 445.52 Dx = 1.316 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
a = 6.649 (2) Å Cell parameters from 5148 reflections
b = 18.712 (6) Å θ = 2.2–27.9°
c = 9.349 (3) Å µ = 0.18 mm1
β = 104.903 (5)° T = 113 K
V = 1124.0 (7) Å3 Block, pale yellow
Z = 2 0.20 × 0.18 × 0.12 mm

Data collection

Rigaku Saturn724 CCD diffractometer 2747 independent reflections
Radiation source: rotating anode 2315 reflections with I > 2σ(I)
graphite Rint = 0.041
ω and φ scans θmax = 27.9°, θmin = 2.2°
Absorption correction: multi-scan (CrystalClear; Rigaku, 2008) h = −8→8
Tmin = 0.966, Tmax = 0.979 k = −24→24
11848 measured reflections l = −12→12

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.064 w = 1/[σ2(Fo2) + (0.0327P)2] where P = (Fo2 + 2Fc2)/3
S = 0.98 (Δ/σ)max < 0.001
2747 reflections Δρmax = 0.15 e Å3
353 parameters Δρmin = −0.20 e Å3
215 restraints Absolute structure: Flack (1983), 2401 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.05 (8)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O1 1.1534 (2) 0.63768 (7) 0.18356 (15) 0.0277 (3)
O2 0.5930 (2) 0.61573 (8) −0.05979 (16) 0.0351 (4)
O3 0.3142 (2) 0.68792 (8) −0.10026 (16) 0.0306 (4)
N1 1.3400 (2) 0.65769 (9) 0.42905 (17) 0.0222 (4)
N2 1.3238 (2) 0.70218 (10) 0.54712 (17) 0.0249 (4)
N3 0.8186 (3) 0.72194 (9) 0.11372 (18) 0.0247 (4)
H1 0.8944 0.6858 0.0974 0.028 (6)*
C1 1.5151 (3) 0.61245 (11) 0.4456 (2) 0.0226 (4)
C2 1.5855 (3) 0.59401 (13) 0.3226 (2) 0.0314 (5)
H2 1.5161 0.6115 0.2273 0.038*
C3 1.7570 (3) 0.55012 (14) 0.3403 (3) 0.0380 (6)
H3 1.8053 0.5378 0.2564 0.046*
C4 1.8595 (3) 0.52384 (13) 0.4775 (3) 0.0361 (6)
H4 1.9765 0.4933 0.4879 0.043*
C5 1.7900 (3) 0.54243 (12) 0.5997 (3) 0.0317 (5)
H5 1.8598 0.5246 0.6946 0.038*
C6 1.6182 (3) 0.58712 (11) 0.5842 (2) 0.0260 (5)
H6 1.5719 0.6002 0.6686 0.031*
C7 1.1799 (3) 0.66940 (11) 0.3045 (2) 0.0230 (4)
C8 1.0560 (3) 0.72515 (10) 0.3459 (2) 0.0209 (4)
C9 1.1586 (3) 0.74221 (11) 0.4976 (2) 0.0237 (4)
C10 1.1023 (3) 0.79648 (13) 0.5971 (2) 0.0335 (5)
H10A 1.2064 0.7961 0.6928 0.050*
H10B 0.9652 0.7851 0.6119 0.050*
H10C 1.0983 0.8439 0.5521 0.050*
C11 0.8795 (3) 0.75220 (10) 0.2467 (2) 0.0209 (4)
C12 0.7620 (11) 0.8131 (3) 0.2843 (9) 0.0201 (13) 0.647 (3)
C13 0.7922 (16) 0.8830 (4) 0.2580 (9) 0.038 (2) 0.647 (3)
C14 0.6536 (12) 0.9317 (5) 0.3156 (10) 0.0313 (13) 0.647 (3)
C15 0.5342 (14) 0.8917 (3) 0.3807 (9) 0.0291 (14) 0.647 (3)
S1 0.5747 (3) 0.80143 (13) 0.3760 (3) 0.0387 (4) 0.647 (3)
C12' 0.757 (2) 0.8125 (5) 0.2850 (18) 0.028 (2) 0.353 (3)
C13' 0.617 (2) 0.8021 (10) 0.3677 (17) 0.036 (3) 0.353 (3)
H13A 0.5751 0.7559 0.3975 0.043* 0.353 (3)
C15' 0.621 (2) 0.9239 (10) 0.3287 (18) 0.034 (2) 0.353 (3)
C14' 0.528 (3) 0.8741 (7) 0.395 (2) 0.037 (2) 0.353 (3)
S1' 0.7937 (7) 0.8971 (2) 0.2379 (5) 0.0324 (8) 0.353 (3)
C16 0.6425 (3) 0.74125 (11) −0.0075 (2) 0.0231 (4)
H16 0.5549 0.7779 0.0258 0.028*
C17 0.7166 (3) 0.76982 (11) −0.1407 (2) 0.0255 (5)
H17A 0.8063 0.7335 −0.1703 0.031*
H17B 0.5940 0.7775 −0.2254 0.031*
C18 0.8361 (3) 0.83898 (11) −0.1058 (2) 0.0270 (5)
C19 1.0459 (3) 0.83866 (14) −0.0317 (2) 0.0329 (5)
H19 1.1163 0.7946 −0.0048 0.040*
C20 1.1537 (4) 0.90311 (16) 0.0032 (3) 0.0435 (6)
H20 1.2974 0.9027 0.0535 0.052*
C21 1.0520 (5) 0.96732 (15) −0.0351 (3) 0.0496 (7)
H21 1.1249 1.0111 −0.0100 0.060*
C22 0.8446 (5) 0.96765 (14) −0.1097 (3) 0.0512 (7)
H22 0.7747 1.0118 −0.1372 0.061*
C23 0.7374 (4) 0.90402 (13) −0.1449 (2) 0.0386 (6)
H23 0.5943 0.9049 −0.1966 0.046*
C24 0.5168 (3) 0.67377 (11) −0.0565 (2) 0.0246 (5)
C25 0.1802 (3) 0.62806 (13) −0.1612 (3) 0.0384 (6)
H25A 0.2104 0.6123 −0.2534 0.058*
H25B 0.0343 0.6429 −0.1814 0.058*
H25C 0.2055 0.5886 −0.0899 0.058*
H13 0.894 (5) 0.907 (2) 0.219 (4) 0.046* 0.647 (3)
H14 0.639 (10) 0.9824 (9) 0.298 (6) 0.046* 0.647 (3)
H15 0.416 (4) 0.904 (3) 0.416 (4) 0.046* 0.647 (3)
H15' 0.627 (19) 0.9752 (12) 0.327 (11) 0.046* 0.353 (3)
H14' 0.449 (10) 0.892 (4) 0.460 (6) 0.046* 0.353 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0368 (8) 0.0247 (8) 0.0186 (7) 0.0067 (6) 0.0015 (6) −0.0056 (6)
O2 0.0449 (9) 0.0197 (8) 0.0349 (9) 0.0023 (8) −0.0003 (7) −0.0039 (7)
O3 0.0288 (8) 0.0279 (9) 0.0349 (8) −0.0047 (7) 0.0078 (6) −0.0087 (7)
N1 0.0266 (9) 0.0233 (9) 0.0155 (8) 0.0027 (7) 0.0033 (7) −0.0024 (7)
N2 0.0287 (9) 0.0279 (9) 0.0179 (9) 0.0009 (8) 0.0057 (7) −0.0056 (7)
N3 0.0332 (10) 0.0204 (9) 0.0174 (8) 0.0069 (8) 0.0007 (7) −0.0025 (7)
C1 0.0232 (10) 0.0190 (10) 0.0255 (11) −0.0015 (9) 0.0061 (8) −0.0012 (8)
C2 0.0318 (12) 0.0378 (13) 0.0256 (11) 0.0017 (10) 0.0093 (9) 0.0003 (10)
C3 0.0329 (13) 0.0452 (14) 0.0379 (13) 0.0052 (11) 0.0127 (10) −0.0081 (11)
C4 0.0264 (12) 0.0326 (13) 0.0473 (14) 0.0058 (10) 0.0061 (11) −0.0046 (11)
C5 0.0279 (12) 0.0279 (12) 0.0341 (12) −0.0020 (10) −0.0015 (10) 0.0020 (10)
C6 0.0291 (11) 0.0243 (11) 0.0232 (10) −0.0020 (9) 0.0042 (9) −0.0010 (9)
C7 0.0280 (11) 0.0183 (10) 0.0216 (10) −0.0012 (9) 0.0041 (9) −0.0004 (8)
C8 0.0230 (10) 0.0206 (10) 0.0188 (10) −0.0010 (9) 0.0047 (8) −0.0012 (8)
C9 0.0267 (11) 0.0244 (11) 0.0194 (10) 0.0004 (9) 0.0051 (8) −0.0025 (8)
C10 0.0385 (13) 0.0410 (13) 0.0187 (10) 0.0095 (11) 0.0032 (9) −0.0069 (10)
C11 0.0264 (11) 0.0173 (10) 0.0196 (10) −0.0025 (8) 0.0069 (9) −0.0011 (8)
C12 0.020 (2) 0.022 (2) 0.016 (2) −0.001 (2) 0.0006 (19) −0.003 (2)
C13 0.041 (3) 0.031 (4) 0.045 (3) 0.007 (3) 0.016 (2) 0.000 (3)
C14 0.034 (3) 0.021 (2) 0.038 (2) −0.006 (2) 0.0089 (18) −0.0018 (19)
C15 0.033 (2) 0.024 (3) 0.035 (2) 0.005 (2) 0.0174 (19) −0.002 (2)
S1 0.0402 (9) 0.0331 (7) 0.0529 (8) 0.0029 (7) 0.0304 (7) 0.0005 (6)
C12' 0.029 (4) 0.025 (4) 0.031 (4) 0.001 (4) 0.009 (4) −0.004 (4)
C13' 0.036 (4) 0.031 (4) 0.041 (4) 0.011 (4) 0.013 (4) −0.011 (3)
C15' 0.038 (4) 0.022 (4) 0.043 (4) 0.000 (4) 0.012 (3) −0.007 (3)
C14' 0.037 (3) 0.037 (4) 0.043 (4) −0.002 (4) 0.018 (3) 0.001 (4)
S1' 0.0388 (13) 0.0156 (12) 0.0468 (15) −0.0019 (10) 0.0183 (11) −0.0063 (11)
C16 0.0286 (11) 0.0199 (10) 0.0186 (10) 0.0026 (9) 0.0020 (9) −0.0013 (8)
C17 0.0310 (12) 0.0252 (11) 0.0169 (10) 0.0014 (9) 0.0000 (9) −0.0017 (8)
C18 0.0330 (12) 0.0277 (12) 0.0206 (10) −0.0031 (10) 0.0073 (9) −0.0021 (9)
C19 0.0322 (13) 0.0415 (14) 0.0262 (11) −0.0043 (11) 0.0095 (10) −0.0095 (11)
C20 0.0389 (14) 0.0619 (18) 0.0340 (13) −0.0207 (14) 0.0174 (11) −0.0165 (13)
C21 0.078 (2) 0.0411 (16) 0.0351 (13) −0.0313 (15) 0.0243 (14) −0.0092 (12)
C22 0.079 (2) 0.0269 (13) 0.0446 (15) −0.0080 (14) 0.0107 (15) 0.0088 (11)
C23 0.0482 (14) 0.0307 (12) 0.0322 (12) −0.0045 (11) 0.0019 (11) 0.0068 (11)
C24 0.0343 (12) 0.0234 (11) 0.0156 (10) −0.0001 (10) 0.0056 (9) 0.0001 (8)
C25 0.0351 (13) 0.0377 (14) 0.0431 (14) −0.0114 (11) 0.0112 (11) −0.0139 (11)

Geometric parameters (Å, °)

O1—C7 1.249 (2) C14—H15' 0.85 (5)
O2—C24 1.202 (2) C15—S1 1.712 (5)
O3—C24 1.330 (2) C15—H15 0.959 (10)
O3—C25 1.453 (2) C15—H14' 1.04 (4)
N1—C7 1.378 (2) S1—H13A 0.8749
N1—N2 1.409 (2) C12'—C13' 1.368 (9)
N1—C1 1.415 (3) C12'—S1' 1.678 (9)
N2—C9 1.311 (3) C13'—C14' 1.518 (10)
N3—C11 1.331 (2) C13'—H13A 0.9699
N3—C16 1.450 (3) C15'—C14' 1.349 (9)
N3—H1 0.8800 C15'—S1' 1.674 (9)
C1—C6 1.384 (3) C15'—H14 1.15 (3)
C1—C2 1.392 (3) C15'—H15' 0.962 (11)
C2—C3 1.380 (3) C14'—H15 1.00 (3)
C2—H2 0.9500 C14'—H14' 0.961 (11)
C3—C4 1.379 (3) S1'—H13 0.76 (2)
C3—H3 0.9500 C16—C24 1.519 (3)
C4—C5 1.382 (3) C16—C17 1.547 (3)
C4—H4 0.9500 C16—H16 1.0000
C5—C6 1.393 (3) C17—C18 1.510 (3)
C5—H5 0.9500 C17—H17A 0.9900
C6—H6 0.9500 C17—H17B 0.9900
C7—C8 1.443 (3) C18—C19 1.389 (3)
C8—C11 1.391 (3) C18—C23 1.386 (3)
C8—C9 1.442 (3) C19—C20 1.398 (4)
C9—C10 1.489 (3) C19—H19 0.9500
C10—H10A 0.9800 C20—C21 1.380 (4)
C10—H10B 0.9800 C20—H20 0.9500
C10—H10C 0.9800 C21—C22 1.376 (4)
C11—C12 1.474 (5) C21—H21 0.9500
C11—C12' 1.489 (9) C22—C23 1.383 (3)
C12—C13 1.356 (7) C22—H22 0.9500
C12—S1 1.698 (5) C23—H23 0.9500
C13—C14 1.491 (8) C25—H25A 0.9800
C13—H13 0.963 (10) C25—H25B 0.9800
C14—C15 1.345 (6) C25—H25C 0.9800
C14—H14 0.963 (10)
C24—O3—C25 115.95 (17) H15—C15—H14' 27 (5)
C7—N1—N2 111.72 (15) C12—S1—C15 91.5 (4)
C7—N1—C1 128.47 (17) C12—S1—H13A 106.4
N2—N1—C1 119.63 (15) C15—S1—H13A 161.0
C9—N2—N1 106.65 (15) C13'—C12'—C11 121.6 (10)
C11—N3—C16 127.91 (17) C13'—C12'—S1' 116.7 (10)
C11—N3—H1 116.0 C11—C12'—S1' 121.6 (7)
C16—N3—H1 116.0 C12'—C13'—C14' 108.5 (15)
C6—C1—C2 119.8 (2) C12'—C13'—H13A 125.1
C6—C1—N1 120.16 (18) C14'—C13'—H13A 126.3
C2—C1—N1 120.00 (18) C14'—C15'—S1' 118.6 (15)
C3—C2—C1 119.4 (2) C14'—C15'—H14 150 (3)
C3—C2—H2 120.3 S1'—C15'—H14 92 (3)
C1—C2—H2 120.3 C14'—C15'—H15' 137 (6)
C4—C3—C2 121.3 (2) S1'—C15'—H15' 104 (7)
C4—C3—H3 119.3 H14—C15'—H15' 15 (8)
C2—C3—H3 119.3 C15'—C14'—C13' 107.1 (18)
C3—C4—C5 119.2 (2) C15'—C14'—H15 99 (3)
C3—C4—H4 120.4 C13'—C14'—H15 151 (3)
C5—C4—H4 120.4 C15'—C14'—H14' 116 (6)
C4—C5—C6 120.3 (2) C13'—C14'—H14' 136 (5)
C4—C5—H5 119.9 H15—C14'—H14' 28 (5)
C6—C5—H5 119.9 C15'—S1'—C12' 89.0 (8)
C1—C6—C5 119.9 (2) C15'—S1'—H13 144 (3)
C1—C6—H6 120.1 C12'—S1'—H13 119 (3)
C5—C6—H6 120.1 N3—C16—C24 107.42 (16)
O1—C7—N1 126.01 (18) N3—C16—C17 110.79 (17)
O1—C7—C8 129.01 (18) C24—C16—C17 108.01 (16)
N1—C7—C8 104.97 (16) N3—C16—H16 110.2
C11—C8—C9 132.86 (18) C24—C16—H16 110.2
C11—C8—C7 121.75 (18) C17—C16—H16 110.2
C9—C8—C7 105.39 (16) C18—C17—C16 112.39 (16)
N2—C9—C8 111.26 (17) C18—C17—H17A 109.1
N2—C9—C10 119.42 (18) C16—C17—H17A 109.1
C8—C9—C10 129.32 (18) C18—C17—H17B 109.1
C9—C10—H10A 109.5 C16—C17—H17B 109.1
C9—C10—H10B 109.5 H17A—C17—H17B 107.9
H10A—C10—H10B 109.5 C19—C18—C23 118.8 (2)
C9—C10—H10C 109.5 C19—C18—C17 120.6 (2)
H10A—C10—H10C 109.5 C23—C18—C17 120.54 (19)
H10B—C10—H10C 109.5 C18—C19—C20 120.1 (2)
N3—C11—C8 118.04 (17) C18—C19—H19 119.9
N3—C11—C12 119.9 (4) C20—C19—H19 119.9
C8—C11—C12 122.0 (4) C21—C20—C19 120.2 (2)
N3—C11—C12' 119.5 (7) C21—C20—H20 119.9
C8—C11—C12' 122.4 (7) C19—C20—H20 119.9
C12—C11—C12' 1.4 (7) C22—C21—C20 119.7 (2)
C13—C12—C11 126.2 (6) C22—C21—H21 120.1
C13—C12—S1 112.2 (6) C20—C21—H21 120.1
C11—C12—S1 121.5 (4) C21—C22—C23 120.3 (3)
C12—C13—C14 112.9 (9) C21—C22—H22 119.8
C12—C13—H13 132 (3) C23—C22—H22 119.8
C14—C13—H13 115 (3) C22—C23—C18 120.8 (2)
C15—C14—C13 108.4 (9) C22—C23—H23 119.6
C15—C14—H14 125 (3) C18—C23—H23 119.6
C13—C14—H14 126 (3) O2—C24—O3 124.90 (19)
C15—C14—H15' 108 (7) O2—C24—C16 123.79 (19)
C13—C14—H15' 143 (7) O3—C24—C16 111.26 (17)
H14—C14—H15' 19 (8) O3—C25—H25A 109.5
C14—C15—S1 115.0 (7) O3—C25—H25B 109.5
C14—C15—H15 131 (3) H25A—C25—H25B 109.5
S1—C15—H15 114 (3) O3—C25—H25C 109.5
C14—C15—H14' 144 (5) H25A—C25—H25C 109.5
S1—C15—H14' 98 (5) H25B—C25—H25C 109.5
C7—N1—N2—C9 −1.1 (2) C12'—C11—C12—S1 21 (39)
C1—N1—N2—C9 174.54 (17) C11—C12—C13—C14 −177.4 (9)
C7—N1—C1—C6 −156.68 (19) S1—C12—C13—C14 −0.2 (3)
N2—N1—C1—C6 28.5 (3) C12—C13—C14—C15 0.4 (5)
C7—N1—C1—C2 24.1 (3) C13—C14—C15—S1 −0.5 (6)
N2—N1—C1—C2 −150.69 (19) C13—C12—S1—C15 −0.1 (2)
C6—C1—C2—C3 0.5 (3) C11—C12—S1—C15 177.3 (7)
N1—C1—C2—C3 179.7 (2) C14—C15—S1—C12 0.4 (4)
C1—C2—C3—C4 0.3 (4) N3—C11—C12'—C13' 99.4 (8)
C2—C3—C4—C5 −0.6 (4) C8—C11—C12'—C13' −79.7 (9)
C3—C4—C5—C6 0.1 (3) C12—C11—C12'—C13' −154 (40)
C2—C1—C6—C5 −1.0 (3) N3—C11—C12'—S1' −84.4 (11)
N1—C1—C6—C5 179.79 (18) C8—C11—C12'—S1' 96.5 (11)
C4—C5—C6—C1 0.7 (3) C12—C11—C12'—S1' 22 (38)
N2—N1—C7—O1 −179.70 (19) C11—C12'—C13'—C14' 176.6 (17)
C1—N1—C7—O1 5.2 (3) S1'—C12'—C13'—C14' 0.2 (4)
N2—N1—C7—C8 0.5 (2) S1'—C15'—C14'—C13' 0.8 (10)
C1—N1—C7—C8 −174.58 (18) C12'—C13'—C14'—C15' −0.6 (7)
O1—C7—C8—C11 −0.5 (3) C14'—C15'—S1'—C12' −0.6 (7)
N1—C7—C8—C11 179.22 (18) C13'—C12'—S1'—C15' 0.2 (3)
O1—C7—C8—C9 −179.6 (2) C11—C12'—S1'—C15' −176.2 (16)
N1—C7—C8—C9 0.1 (2) C11—N3—C16—C24 −128.0 (2)
N1—N2—C9—C8 1.1 (2) C11—N3—C16—C17 114.3 (2)
N1—N2—C9—C10 −178.75 (18) N3—C16—C17—C18 −65.0 (2)
C11—C8—C9—N2 −179.8 (2) C24—C16—C17—C18 177.56 (17)
C7—C8—C9—N2 −0.8 (2) C16—C17—C18—C19 82.1 (2)
C11—C8—C9—C10 0.1 (4) C16—C17—C18—C23 −96.9 (2)
C7—C8—C9—C10 179.0 (2) C23—C18—C19—C20 0.5 (3)
C16—N3—C11—C8 −179.25 (18) C17—C18—C19—C20 −178.42 (19)
C16—N3—C11—C12 0.0 (4) C18—C19—C20—C21 0.3 (3)
C16—N3—C11—C12' 1.6 (6) C19—C20—C21—C22 −0.9 (4)
C9—C8—C11—N3 −176.8 (2) C20—C21—C22—C23 0.7 (4)
C7—C8—C11—N3 4.4 (3) C21—C22—C23—C18 0.1 (4)
C9—C8—C11—C12 3.9 (4) C19—C18—C23—C22 −0.7 (3)
C7—C8—C11—C12 −174.9 (3) C17—C18—C23—C22 178.2 (2)
C9—C8—C11—C12' 2.3 (6) C25—O3—C24—O2 −2.4 (3)
C7—C8—C11—C12' −176.5 (5) C25—O3—C24—C16 175.07 (17)
N3—C11—C12—C13 −87.5 (5) N3—C16—C24—O2 −37.1 (3)
C8—C11—C12—C13 91.7 (5) C17—C16—C24—O2 82.4 (2)
C12'—C11—C12—C13 −162 (40) N3—C16—C24—O3 145.40 (16)
N3—C11—C12—S1 95.4 (5) C17—C16—C24—O3 −95.05 (19)
C8—C11—C12—S1 −85.4 (5)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N3—H1···O1 0.88 1.93 2.668 (2) 141.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2448).

References

  1. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  2. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  3. Li, J., Jiang, L. & An, Y. (2004). Chin. J. Appl. Chem. 21, 150–153.
  4. Rigaku (2008). CrystalClear Rigaku Corporation, Tokyo, Japan.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Tan, C., Pan, L. & Fu, Y. (2009). Mod. Agrochem. 2, 6–12.
  7. Xiong, G., Yang, Z. & Guo, A. (1993). Fine Chem. 6, 1–3.
  8. Zhang, X., Huang, M., Du, C. & Han, J. (2010). Acta Cryst. E66, o273. [DOI] [PMC free article] [PubMed]
  9. Zhu, H., Shi, J., Wei, Z., Dai, R. & Zhang, X. (2010). Acta Cryst. E66, o1352. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811029904/om2448sup1.cif

e-67-o2200-sup1.cif (26KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811029904/om2448Isup2.hkl

e-67-o2200-Isup2.hkl (132.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811029904/om2448Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES