Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jul 30;67(Pt 8):o2202. doi: 10.1107/S1600536811029734

Phenyl bis­(morpholin-4-yl­amido)­phosphinate

Mehrdad Pourayoubi a,*, Hossein Eshtiagh-Hosseini a, Monireh Negari a, Marek Nečas b
PMCID: PMC3213632  PMID: 22091209

Abstract

In the title compound, C14H23N4O4P, the P atom is in a distorted tetra­hedral environment with bond angles in the range 96.87 (6)–119.86 (6)°. The two morpholinyl groups adopt a chair conformation. The phenyl ring is disordered over two sets of sites with equal occupancies [0.500 (2)]. In the crystal, adjacent mol­ecules are linked via N—H⋯O hydrogen bonds into an extended chain running parallel to the a axis. Only one of the amidate N—H groups is involved in hydrogen bonding.

Related literature

For background to compounds having a P(=O)(O)(N)(N) skeleton, see: Sabbaghi et al. (2010). For bond lengths and angles in related structures, see: Ghadimi et al. (2009).graphic file with name e-67-o2202-scheme1.jpg

Experimental

Crystal data

  • C14H23N4O4P

  • M r = 342.33

  • Triclinic, Inline graphic

  • a = 4.7469 (2) Å

  • b = 12.3528 (5) Å

  • c = 14.2149 (5) Å

  • α = 90.542 (3)°

  • β = 98.389 (4)°

  • γ = 93.009 (4)°

  • V = 823.35 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 120 K

  • 0.20 × 0.10 × 0.10 mm

Data collection

  • Oxford Diffraction Xcalibur S diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) T min = 0.877, T max = 1.000

  • 10043 measured reflections

  • 2888 independent reflections

  • 2272 reflections with I > 2σ(I)

  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.029

  • wR(F 2) = 0.070

  • S = 0.99

  • 2888 reflections

  • 262 parameters

  • 162 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.32 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: enCIFer (Allen et al., 2004).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811029734/gk2392sup1.cif

e-67-o2202-sup1.cif (26.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811029734/gk2392Isup2.hkl

e-67-o2202-Isup2.hkl (141.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811029734/gk2392Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3N⋯O1i 0.823 (15) 2.093 (16) 2.8951 (16) 164.9 (15)

Symmetry code: (i) Inline graphic.

Acknowledgments

Support of this investigation by Ferdowsi University of Mashhad is gratefully acknowledged.

supplementary crystallographic information

Comment

Structure determination of the title compound, P(O)[OC6H5][NHNC4H8O]2 (Fig. 1), was performed as a part of a project in our laboratory on the synthesis of compounds having a P(═O)(O)(N)(N) skeleton (Sabbaghi et al., 2010). Single crystals of title compound were obtained from a mixture of CH3OH/CH3CN (4:1 v/v) after slow evaporation at room temperature.

The P═O (1.4705 (10) Å), P—O (1.5975 (10) Å) and P—N (1.6295 (13) Å & 1.6331 (13) Å) bond lengths and the C—O—P angle (122.17 (8)°) are standard for this category of compounds (Ghadimi et al., 2009). The P atom has a distorted tetrahedral configuration (Fig. 1), the bond angles at the P atom vary in the range from 96.87 (6)° [the angle O2—P1—N3] to 119.86 (6)° [the angle O1—P1—N3].

In the crystal, the molecules are hydrogen-bonded in a linear arrangement parallel to [100] through N3—H3N···O1i [symmetry code: (i) x - 1, y, z] hydrogen bond (Table 1, Fig. 2).

Experimental

To a solution of phenyldichlorophosphate (2.507 mmol) in chloroform (15 ml), a solution of aminomorpholine (10.028 mmol) in chloroform (30 ml) was added at 273 K. After 4 h of stirring, the solvent was evaporated in vacuum. The solid was washed with distilled water. Single crystals, suitable for crystallography, were obtained from a solution of the title compound in methanol and acetonitrile (4:1) after slow evaporation at room temperature. IR (KBr, cm-1): 3278, 3107, 2945, 2869, 2830, 1588, 1488, 1223, 1107, 926, 869, 759, 698.

Refinement

All carbon bound H atoms were placed at calculated positions and were refined as riding with their Uiso set to 1.2Ueq of the respective carrier atoms. Nitrogen bound H atoms were located in a difference Fourier map and refined isotropically. The disordered phenyl group was modeled over two sites using similarity restraints on anisotropic displacement parameters.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with ellipsoids shown at the 50% probability level. The disorder is not shown.

Fig. 2.

Fig. 2.

Partial packing view showing the formation of the chain through N—H···O hydrogen bond (shown as dotted lines). H atoms not involved in hydrogen bonding have been omitted for clarity. [Symmetry code: (i) x - 1, y, z]

Crystal data

C14H23N4O4P Z = 2
Mr = 342.33 F(000) = 364
Triclinic, P1 Dx = 1.381 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 4.7469 (2) Å Cell parameters from 5042 reflections
b = 12.3528 (5) Å θ = 3.3–27.2°
c = 14.2149 (5) Å µ = 0.19 mm1
α = 90.542 (3)° T = 120 K
β = 98.389 (4)° Prism, colorless
γ = 93.009 (4)° 0.20 × 0.10 × 0.10 mm
V = 823.35 (6) Å3

Data collection

Oxford Diffraction Xcalibur S diffractometer 2888 independent reflections
Radiation source: Enhance (Mo) X-ray Source 2272 reflections with I > 2σ(I)
graphite Rint = 0.021
Detector resolution: 8.4353 pixels mm-1 θmax = 25.0°, θmin = 3.3°
ω scans h = −5→5
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) k = −14→14
Tmin = 0.877, Tmax = 1.000 l = −16→9
10043 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.070 H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.0404P)2P] where P = (Fo2 + 2Fc2)/3
2888 reflections (Δ/σ)max = 0.001
262 parameters Δρmax = 0.22 e Å3
162 restraints Δρmin = −0.32 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
P1 0.34183 (7) 0.63069 (3) 0.29935 (3) 0.01615 (12)
O1 0.55619 (19) 0.55524 (7) 0.33888 (7) 0.0196 (2)
O2 0.11776 (19) 0.58245 (7) 0.21233 (7) 0.0196 (3)
O3 0.1822 (2) 0.80213 (10) 0.63761 (8) 0.0382 (3)
O4 0.3795 (2) 1.01932 (8) 0.11186 (8) 0.0310 (3)
N3 0.1088 (3) 0.67116 (10) 0.36409 (9) 0.0180 (3)
C1 0.1500 (3) 0.48228 (11) 0.16832 (11) 0.0169 (3)
C2A 0.1144 (7) 0.3882 (2) 0.2144 (3) 0.0201 (8) 0.500 (2)
H2AA 0.0754 0.3896 0.2781 0.024* 0.500 (2)
C3A 0.1348 (8) 0.2902 (2) 0.1688 (3) 0.0228 (8) 0.500 (2)
H3AA 0.1112 0.2236 0.2004 0.027* 0.500 (2)
C4A 0.192 (5) 0.2917 (13) 0.0735 (11) 0.0236 (19) 0.500 (2)
H4AA 0.2198 0.2253 0.0426 0.028* 0.500 (2)
C5A 0.2073 (6) 0.3829 (2) 0.0270 (2) 0.0222 (8) 0.500 (2)
H5AA 0.2332 0.3813 −0.0381 0.027* 0.500 (2)
C6A 0.1858 (6) 0.4815 (2) 0.0724 (2) 0.0193 (8) 0.500 (2)
H6AA 0.1953 0.5475 0.0388 0.023* 0.500 (2)
C2B −0.0552 (7) 0.4023 (2) 0.1721 (2) 0.0220 (8) 0.500 (2)
H2BA −0.2160 0.4145 0.2028 0.026* 0.500 (2)
C3B −0.0253 (8) 0.3024 (3) 0.1303 (3) 0.0276 (9) 0.500 (2)
H3BA −0.1718 0.2470 0.1306 0.033* 0.500 (2)
C4B 0.203 (5) 0.2816 (13) 0.0897 (11) 0.023 (2) 0.500 (2)
H4BA 0.2230 0.2116 0.0642 0.027* 0.500 (2)
C5B 0.4184 (6) 0.3673 (2) 0.0852 (2) 0.0255 (9) 0.500 (2)
H5BA 0.5776 0.3553 0.0538 0.031* 0.500 (2)
C6B 0.3922 (6) 0.4675 (2) 0.1271 (2) 0.0214 (8) 0.500 (2)
H6BA 0.5358 0.5241 0.1274 0.026* 0.500 (2)
N1 0.2242 (2) 0.72689 (9) 0.45092 (9) 0.0187 (3)
C8 0.0377 (3) 0.81391 (12) 0.46689 (12) 0.0274 (4)
H8A −0.1571 0.7832 0.4706 0.033*
H8B 0.0268 0.8651 0.4134 0.033*
C9 0.1576 (4) 0.87271 (13) 0.55883 (13) 0.0374 (5)
H9A 0.3480 0.9064 0.5530 0.045*
H9B 0.0319 0.9314 0.5703 0.045*
C10 0.3616 (4) 0.71670 (14) 0.62119 (12) 0.0330 (4)
H10A 0.3772 0.6673 0.6759 0.040*
H10B 0.5552 0.7478 0.6160 0.040*
C11 0.2460 (3) 0.65330 (12) 0.53168 (11) 0.0257 (4)
H11A 0.3746 0.5950 0.5217 0.031*
H11B 0.0557 0.6194 0.5373 0.031*
N4 0.5044 (3) 0.73922 (10) 0.26441 (10) 0.0217 (3)
N2 0.3561 (2) 0.82518 (9) 0.21815 (9) 0.0182 (3)
C13 0.3853 (3) 0.82364 (12) 0.11680 (11) 0.0219 (4)
H13A 0.2914 0.7562 0.0862 0.026*
H13B 0.5898 0.8251 0.1096 0.026*
C14 0.2503 (3) 0.92070 (12) 0.06897 (12) 0.0280 (4)
H14A 0.2714 0.9192 0.0007 0.034*
H14B 0.0440 0.9171 0.0737 0.034*
C15 0.3467 (4) 1.02243 (12) 0.20977 (13) 0.0334 (4)
H15A 0.1412 1.0206 0.2156 0.040*
H15B 0.4364 1.0911 0.2393 0.040*
C16 0.4816 (3) 0.92776 (12) 0.26208 (12) 0.0267 (4)
H16A 0.6896 0.9322 0.2603 0.032*
H16B 0.4514 0.9308 0.3295 0.032*
H3N −0.035 (3) 0.6311 (12) 0.3652 (11) 0.024 (4)*
H4N 0.674 (4) 0.7378 (13) 0.2627 (12) 0.032 (5)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
P1 0.01465 (19) 0.01504 (19) 0.0181 (3) 0.00138 (14) −0.00015 (16) 0.00092 (16)
O1 0.0163 (5) 0.0179 (5) 0.0238 (7) 0.0023 (4) −0.0004 (4) 0.0032 (5)
O2 0.0187 (5) 0.0187 (5) 0.0201 (7) 0.0048 (4) −0.0027 (5) −0.0049 (5)
O3 0.0424 (7) 0.0456 (7) 0.0272 (8) −0.0048 (6) 0.0110 (6) −0.0135 (6)
O4 0.0410 (7) 0.0185 (6) 0.0328 (8) −0.0035 (5) 0.0047 (6) 0.0074 (5)
N3 0.0157 (6) 0.0174 (6) 0.0196 (8) −0.0032 (5) −0.0004 (6) −0.0047 (6)
C1 0.0163 (7) 0.0169 (7) 0.0168 (9) 0.0032 (6) −0.0004 (6) −0.0007 (7)
C2A 0.0189 (16) 0.0240 (16) 0.0173 (19) 0.0026 (13) 0.0012 (15) 0.0018 (14)
C3A 0.0257 (18) 0.0142 (15) 0.026 (2) −0.0001 (14) −0.0026 (18) 0.0050 (15)
C4A 0.028 (3) 0.023 (4) 0.020 (4) 0.006 (3) 0.000 (4) −0.005 (3)
C5A 0.0229 (17) 0.0264 (17) 0.0173 (19) 0.0017 (13) 0.0037 (15) −0.0025 (14)
C6A 0.0189 (16) 0.0177 (14) 0.0203 (19) −0.0018 (12) 0.0000 (15) 0.0051 (13)
C2B 0.0207 (17) 0.0256 (16) 0.020 (2) 0.0007 (13) 0.0047 (16) 0.0038 (14)
C3B 0.0274 (19) 0.0203 (16) 0.033 (2) −0.0035 (15) 0.0000 (18) 0.0058 (16)
C4B 0.033 (3) 0.012 (2) 0.022 (5) 0.009 (2) −0.003 (4) 0.005 (3)
C5B 0.0223 (16) 0.0326 (17) 0.022 (2) 0.0087 (13) 0.0020 (15) −0.0064 (15)
C6B 0.0180 (16) 0.0232 (15) 0.022 (2) 0.0006 (12) 0.0003 (14) 0.0008 (14)
N1 0.0203 (6) 0.0183 (6) 0.0169 (8) 0.0005 (5) 0.0007 (6) −0.0030 (6)
C8 0.0283 (8) 0.0213 (8) 0.0322 (11) 0.0036 (7) 0.0028 (8) −0.0077 (7)
C9 0.0410 (10) 0.0298 (9) 0.0412 (13) 0.0025 (8) 0.0063 (9) −0.0134 (9)
C10 0.0393 (10) 0.0366 (10) 0.0228 (11) −0.0037 (8) 0.0059 (8) −0.0001 (8)
C11 0.0318 (9) 0.0248 (8) 0.0207 (10) −0.0010 (7) 0.0052 (8) 0.0026 (8)
N4 0.0140 (6) 0.0227 (7) 0.0279 (9) 0.0020 (5) 0.0007 (6) 0.0088 (6)
N2 0.0222 (6) 0.0142 (6) 0.0172 (8) 0.0013 (5) −0.0011 (6) 0.0035 (6)
C13 0.0272 (8) 0.0201 (8) 0.0177 (10) −0.0015 (6) 0.0022 (7) −0.0006 (7)
C14 0.0341 (9) 0.0240 (8) 0.0241 (11) −0.0027 (7) −0.0006 (8) 0.0055 (7)
C15 0.0449 (10) 0.0179 (8) 0.0381 (12) −0.0018 (7) 0.0097 (9) −0.0020 (8)
C16 0.0345 (9) 0.0223 (8) 0.0224 (10) −0.0063 (7) 0.0040 (8) −0.0034 (7)

Geometric parameters (Å, °)

P1—O1 1.4705 (10) C5B—C6B 1.387 (4)
P1—O2 1.5975 (10) C5B—H5BA 0.9500
P1—N4 1.6295 (13) C6B—H6BA 0.9500
P1—N3 1.6331 (13) N1—C8 1.4645 (17)
O2—C1 1.4068 (16) N1—C11 1.4663 (19)
O3—C9 1.421 (2) C8—C9 1.510 (2)
O3—C10 1.4286 (19) C8—H8A 0.9900
O4—C15 1.4233 (19) C8—H8B 0.9900
O4—C14 1.4249 (17) C9—H9A 0.9900
N3—N1 1.4297 (17) C9—H9B 0.9900
N3—H3N 0.823 (15) C10—C11 1.505 (2)
C1—C2A 1.354 (3) C10—H10A 0.9900
C1—C2B 1.358 (3) C10—H10B 0.9900
C1—C6B 1.384 (3) C11—H11A 0.9900
C1—C6A 1.399 (3) C11—H11B 0.9900
C2A—C3A 1.382 (4) N4—N2 1.4186 (16)
C2A—H2AA 0.9500 N4—H4N 0.811 (16)
C3A—C4A 1.421 (17) N2—C16 1.4656 (18)
C3A—H3AA 0.9500 N2—C13 1.4674 (18)
C4A—C5A 1.316 (15) C13—C14 1.510 (2)
C4A—H4AA 0.9500 C13—H13A 0.9900
C5A—C6A 1.389 (4) C13—H13B 0.9900
C5A—H5AA 0.9500 C14—H14A 0.9900
C6A—H6AA 0.9500 C14—H14B 0.9900
C2B—C3B 1.388 (4) C15—C16 1.512 (2)
C2B—H2BA 0.9500 C15—H15A 0.9900
C3B—C4B 1.33 (2) C15—H15B 0.9900
C3B—H3BA 0.9500 C16—H16A 0.9900
C4B—C5B 1.44 (2) C16—H16B 0.9900
C4B—H4BA 0.9500
O1—P1—O2 114.63 (5) N1—C8—H8A 109.9
O1—P1—N4 108.95 (6) C9—C8—H8A 109.9
O2—P1—N4 108.62 (6) N1—C8—H8B 109.9
O1—P1—N3 119.86 (6) C9—C8—H8B 109.9
O2—P1—N3 96.87 (6) H8A—C8—H8B 108.3
N4—P1—N3 106.95 (7) O3—C9—C8 112.07 (14)
C1—O2—P1 122.17 (8) O3—C9—H9A 109.2
C9—O3—C10 109.51 (13) C8—C9—H9A 109.2
C15—O4—C14 109.64 (12) O3—C9—H9B 109.2
N1—N3—P1 115.73 (9) C8—C9—H9B 109.2
N1—N3—H3N 116.7 (11) H9A—C9—H9B 107.9
P1—N3—H3N 116.9 (11) O3—C10—C11 111.43 (13)
C2A—C1—C6B 103.2 (2) O3—C10—H10A 109.3
C2B—C1—C6B 122.9 (2) C11—C10—H10A 109.3
C2A—C1—C6A 120.6 (2) O3—C10—H10B 109.3
C2B—C1—C6A 103.1 (2) C11—C10—H10B 109.3
C2A—C1—O2 120.66 (18) H10A—C10—H10B 108.0
C2B—C1—O2 117.71 (18) N1—C11—C10 109.01 (13)
C6B—C1—O2 119.37 (17) N1—C11—H11A 109.9
C6A—C1—O2 118.26 (16) C10—C11—H11A 109.9
C1—C2A—C3A 120.0 (3) N1—C11—H11B 109.9
C1—C2A—H2AA 120.0 C10—C11—H11B 109.9
C3A—C2A—H2AA 120.0 H11A—C11—H11B 108.3
C2A—C3A—C4A 118.2 (7) N2—N4—P1 122.73 (9)
C2A—C3A—H3AA 120.9 N2—N4—H4N 118.0 (12)
C4A—C3A—H3AA 120.9 P1—N4—H4N 117.8 (12)
C5A—C4A—C3A 121.4 (13) N4—N2—C16 108.27 (11)
C5A—C4A—H4AA 119.3 N4—N2—C13 109.67 (11)
C3A—C4A—H4AA 119.3 C16—N2—C13 109.55 (11)
C4A—C5A—C6A 120.4 (8) N2—C13—C14 109.89 (12)
C4A—C5A—H5AA 119.8 N2—C13—H13A 109.7
C6A—C5A—H5AA 119.8 C14—C13—H13A 109.7
C5A—C6A—C1 119.0 (3) N2—C13—H13B 109.7
C5A—C6A—H6AA 120.5 C14—C13—H13B 109.7
C1—C6A—H6AA 120.5 H13A—C13—H13B 108.2
C1—C2B—C3B 118.6 (3) O4—C14—C13 111.09 (12)
C1—C2B—H2BA 120.7 O4—C14—H14A 109.4
C3B—C2B—H2BA 120.7 C13—C14—H14A 109.4
C4B—C3B—C2B 122.1 (8) O4—C14—H14B 109.4
C4B—C3B—H3BA 119.0 C13—C14—H14B 109.4
C2B—C3B—H3BA 119.0 H14A—C14—H14B 108.0
C3B—C4B—C5B 118.9 (13) O4—C15—C16 111.29 (13)
C3B—C4B—H4BA 120.6 O4—C15—H15A 109.4
C5B—C4B—H4BA 120.6 C16—C15—H15A 109.4
C6B—C5B—C4B 119.7 (9) O4—C15—H15B 109.4
C6B—C5B—H5BA 120.2 C16—C15—H15B 109.4
C4B—C5B—H5BA 120.2 H15A—C15—H15B 108.0
C1—C6B—C5B 117.8 (3) N2—C16—C15 110.24 (13)
C1—C6B—H6BA 121.1 N2—C16—H16A 109.6
C5B—C6B—H6BA 121.1 C15—C16—H16A 109.6
N3—N1—C8 108.48 (11) N2—C16—H16B 109.6
N3—N1—C11 111.34 (11) C15—C16—H16B 109.6
C8—N1—C11 109.63 (13) H16A—C16—H16B 108.1
N1—C8—C9 108.73 (13)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N3—H3N···O1i 0.823 (15) 2.093 (16) 2.8951 (16) 164.9 (15)

Symmetry codes: (i) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2392).

References

  1. Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.
  2. Ghadimi, S., Pourayoubi, M. & Ebrahimi Valmoozi, A. A. (2009). Z. Naturforsch. Teil B, 64, 565–569.
  3. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  4. Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  5. Sabbaghi, F., Mancilla Percino, T., Pourayoubi, M. & Leyva, M. A. (2010). Acta Cryst. E66, o1755. [DOI] [PMC free article] [PubMed]
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811029734/gk2392sup1.cif

e-67-o2202-sup1.cif (26.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811029734/gk2392Isup2.hkl

e-67-o2202-Isup2.hkl (141.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811029734/gk2392Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES