Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jul 30;67(Pt 8):o2204. doi: 10.1107/S1600536811029977

(E)-4-Bromo-N-(2-chloro­benzyl­idene)­aniline

Chuang Wang a,*
PMCID: PMC3213634  PMID: 22091211

Abstract

In the title Schiff base mol­ecule, C13H9BrClN, the dihedral angle between the benzene rings is 49.8 (2)° and the mol­ecule has an E configuration about the C=N bond. In the crystal, there are no directional interactions but only van der Waals inter­molecular inter­action forces between neighbouring mol­ecules.

Related literature

For the anti­bacterial activities of Schiff base compounds, see: El Masry et al. (2000). For the anti­cancer properties of Schiff base compounds, see: Dao et al. (2000). For related crystal structures, see: Sun et al. (2011a ,b ); Guo et al. (2011). For standard bond-length values, see: Allen et al. (1987).graphic file with name e-67-o2204-scheme1.jpg

Experimental

Crystal data

  • C13H9BrClN

  • M r = 294.57

  • Monoclinic, Inline graphic

  • a = 15.243 (13) Å

  • b = 4.020 (4) Å

  • c = 20.142 (18) Å

  • β = 103.248 (8)°

  • V = 1201.4 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.61 mm−1

  • T = 296 K

  • 0.25 × 0.23 × 0.21 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.465, T max = 0.518

  • 7879 measured reflections

  • 2219 independent reflections

  • 1413 reflections with I > 2σ(I)

  • R int = 0.049

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048

  • wR(F 2) = 0.138

  • S = 1.04

  • 2219 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.43 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811029977/su2298sup1.cif

e-67-o2204-sup1.cif (14.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811029977/su2298Isup2.hkl

e-67-o2204-Isup2.hkl (109.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811029977/su2298Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The author wishes to thank Professor Shao, Lanzhou University, for collecting the X-ray diffraction data.

supplementary crystallographic information

Comment

Schiff bases compounds have attracted a lot of attention for a long time, because of their applications as antibacterial (El Masry et al., 2000), and anticancer (Dao et al., 2000) agents. We report herein, on the crystal structure of the title new Schiff base compound.

The molecular structure of the title molecule is illustrated in Fig. 1. The geometric parameters agree well with those reported for similar structures (Sun et al., 2011a,b; Guo et al., 2011), and all the bond lengths are within normal ranges (Allen et al., 1987). The dihedral angle between the two aromatic rings in the Schiff base molecule is 49.8 (2)°.

In the crystal, there are only van der Waals intermolecular forces between neighbouring molecules.

Experimental

A mixture of 2-chlorobenzaldehyde (10 mmol), 4-bromoaniline (10 mmol) and methanol (50 ml) was refluxed for 6 h. It was then allowed to cool and was filtered. Recrystallization of the crude product from methanol yielded colourless crystals, suitable for X-ray diffraction analysis.

Refinement

The H atoms were positioned geometrically and refined using the riding-model approximation: C—H = 0.93 Å, Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title molecule, with atom labels and displacement ellipsoids drawn at the 50% probability level.

Crystal data

C13H9BrClN F(000) = 584
Mr = 294.57 Dx = 1.629 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 1725 reflections
a = 15.243 (13) Å θ = 2.8–21.7°
b = 4.020 (4) Å µ = 3.61 mm1
c = 20.142 (18) Å T = 296 K
β = 103.248 (8)° Block, colourless
V = 1201.4 (18) Å3 0.25 × 0.23 × 0.21 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer 2219 independent reflections
Radiation source: fine-focus sealed tube 1413 reflections with I > 2σ(I)
graphite Rint = 0.049
φ and ω scans θmax = 25.5°, θmin = 2.8°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −18→17
Tmin = 0.465, Tmax = 0.518 k = −4→4
7879 measured reflections l = −24→24

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0738P)2 + 0.0187P] where P = (Fo2 + 2Fc2)/3
2219 reflections (Δ/σ)max = 0.001
145 parameters Δρmax = 0.54 e Å3
0 restraints Δρmin = −0.43 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.28006 (4) 0.71850 (15) 1.03703 (3) 0.0824 (3)
C1 0.4330 (3) 0.6328 (11) 0.8929 (2) 0.0499 (11)
H1 0.4917 0.6854 0.8906 0.060*
C2 0.4042 (3) 0.6997 (11) 0.9513 (2) 0.0544 (12)
H2 0.4431 0.8014 0.9880 0.065*
C3 0.3186 (3) 0.6179 (11) 0.9560 (2) 0.0501 (11)
C4 0.2584 (3) 0.4713 (12) 0.9009 (2) 0.0544 (12)
H4 0.2003 0.4154 0.9041 0.065*
C5 0.2870 (3) 0.4110 (12) 0.8416 (2) 0.0527 (12)
H5 0.2469 0.3189 0.8042 0.063*
C6 0.3744 (3) 0.4854 (11) 0.8366 (2) 0.0440 (10)
C7 0.4763 (3) 0.2977 (10) 0.7752 (2) 0.0479 (11)
H7 0.5136 0.2425 0.8171 0.057*
C8 0.5086 (3) 0.2397 (10) 0.7133 (2) 0.0438 (10)
C9 0.4571 (3) 0.3496 (11) 0.6495 (2) 0.0506 (11)
H9 0.4020 0.4532 0.6473 0.061*
C10 0.4871 (4) 0.3061 (12) 0.5909 (3) 0.0603 (13)
H10 0.4520 0.3800 0.5495 0.072*
C11 0.5684 (4) 0.1546 (13) 0.5928 (3) 0.0633 (14)
H11 0.5886 0.1297 0.5528 0.076*
C12 0.6206 (3) 0.0384 (12) 0.6542 (2) 0.0575 (13)
H12 0.6753 −0.0670 0.6557 0.069*
C13 0.5897 (3) 0.0821 (11) 0.7133 (2) 0.0452 (10)
Cl1 0.65673 (8) −0.0722 (3) 0.78942 (6) 0.0647 (4)
N1 0.3988 (2) 0.4211 (9) 0.77412 (18) 0.0491 (9)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.1072 (6) 0.0843 (5) 0.0678 (4) −0.0119 (3) 0.0453 (4) −0.0171 (3)
C1 0.046 (2) 0.052 (3) 0.052 (3) −0.006 (2) 0.011 (2) 0.002 (2)
C2 0.054 (3) 0.057 (3) 0.049 (3) −0.011 (2) 0.004 (2) −0.005 (2)
C3 0.061 (3) 0.046 (3) 0.045 (3) 0.002 (2) 0.016 (2) 0.000 (2)
C4 0.043 (2) 0.057 (3) 0.065 (3) −0.004 (2) 0.015 (2) −0.010 (2)
C5 0.038 (3) 0.062 (3) 0.053 (3) 0.000 (2) 0.001 (2) −0.004 (2)
C6 0.048 (3) 0.042 (3) 0.042 (2) 0.006 (2) 0.009 (2) 0.002 (2)
C7 0.047 (3) 0.051 (3) 0.045 (3) 0.000 (2) 0.008 (2) 0.000 (2)
C8 0.044 (2) 0.042 (3) 0.045 (3) 0.000 (2) 0.010 (2) −0.002 (2)
C9 0.049 (3) 0.054 (3) 0.045 (3) 0.003 (2) 0.003 (2) 0.005 (2)
C10 0.064 (3) 0.065 (3) 0.050 (3) −0.001 (3) 0.010 (2) 0.004 (2)
C11 0.073 (3) 0.068 (3) 0.053 (3) −0.006 (3) 0.022 (3) −0.012 (3)
C12 0.046 (3) 0.062 (3) 0.066 (3) −0.001 (2) 0.015 (2) −0.014 (3)
C13 0.043 (2) 0.047 (3) 0.043 (2) −0.005 (2) 0.005 (2) −0.005 (2)
Cl1 0.0567 (7) 0.0718 (9) 0.0585 (8) 0.0150 (6) −0.0019 (6) −0.0042 (6)
N1 0.046 (2) 0.052 (2) 0.048 (2) 0.0069 (19) 0.0096 (17) −0.0027 (18)

Geometric parameters (Å, °)

Br1—C3 1.900 (5) C7—C8 1.461 (6)
C1—C2 1.374 (6) C7—H7 0.9300
C1—C6 1.404 (6) C8—C13 1.390 (6)
C1—H1 0.9300 C8—C9 1.414 (6)
C2—C3 1.369 (7) C9—C10 1.371 (7)
C2—H2 0.9300 C9—H9 0.9300
C3—C4 1.399 (6) C10—C11 1.374 (8)
C4—C5 1.384 (6) C10—H10 0.9300
C4—H4 0.9300 C11—C12 1.390 (7)
C5—C6 1.391 (6) C11—H11 0.9300
C5—H5 0.9300 C12—C13 1.387 (6)
C6—N1 1.416 (5) C12—H12 0.9300
C7—N1 1.276 (5) C13—Cl1 1.750 (4)
C2—C1—C6 120.3 (4) C8—C7—H7 118.7
C2—C1—H1 119.9 C13—C8—C9 116.8 (4)
C6—C1—H1 119.9 C13—C8—C7 123.2 (4)
C3—C2—C1 120.6 (4) C9—C8—C7 120.0 (4)
C3—C2—H2 119.7 C10—C9—C8 121.2 (4)
C1—C2—H2 119.7 C10—C9—H9 119.4
C2—C3—C4 120.6 (4) C8—C9—H9 119.4
C2—C3—Br1 119.7 (4) C9—C10—C11 120.7 (5)
C4—C3—Br1 119.7 (3) C9—C10—H10 119.7
C5—C4—C3 118.7 (4) C11—C10—H10 119.7
C5—C4—H4 120.7 C10—C11—C12 120.1 (5)
C3—C4—H4 120.7 C10—C11—H11 119.9
C4—C5—C6 121.4 (4) C12—C11—H11 119.9
C4—C5—H5 119.3 C13—C12—C11 118.9 (4)
C6—C5—H5 119.3 C13—C12—H12 120.5
C5—C6—C1 118.4 (4) C11—C12—H12 120.5
C5—C6—N1 118.4 (4) C12—C13—C8 122.4 (4)
C1—C6—N1 123.1 (4) C12—C13—Cl1 117.5 (3)
N1—C7—C8 122.6 (4) C8—C13—Cl1 120.1 (3)
N1—C7—H7 118.7 C7—N1—C6 119.1 (4)
C6—C1—C2—C3 1.3 (7) C7—C8—C9—C10 178.2 (4)
C1—C2—C3—C4 −1.4 (7) C8—C9—C10—C11 −0.2 (7)
C1—C2—C3—Br1 −179.2 (3) C9—C10—C11—C12 1.1 (8)
C2—C3—C4—C5 −0.1 (7) C10—C11—C12—C13 −0.8 (7)
Br1—C3—C4—C5 177.7 (4) C11—C12—C13—C8 −0.3 (7)
C3—C4—C5—C6 1.6 (7) C11—C12—C13—Cl1 179.2 (4)
C4—C5—C6—C1 −1.7 (7) C9—C8—C13—C12 1.2 (6)
C4—C5—C6—N1 −179.3 (4) C7—C8—C13—C12 −178.0 (4)
C2—C1—C6—C5 0.2 (6) C9—C8—C13—Cl1 −178.4 (3)
C2—C1—C6—N1 177.7 (4) C7—C8—C13—Cl1 2.5 (6)
N1—C7—C8—C13 −174.9 (4) C8—C7—N1—C6 −176.8 (4)
N1—C7—C8—C9 6.0 (6) C5—C6—N1—C7 −139.1 (4)
C13—C8—C9—C10 −1.0 (7) C1—C6—N1—C7 43.5 (6)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2298).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Dao, V.-T., Gaspard, C., Mayer, M., Werner, G. H., Nguyen, S. N. & Michelot, R. J. (2000). Eur. J. Med. Chem. 35, 805–813. [DOI] [PubMed]
  4. El Masry, A. H., Fahmy, H. H. & Abdelwahed, S. H. A. (2000). Molecules, 5, 1429–1438.
  5. Guo, Y., Pan, M.-X., Xiang, H., Liu, W.-H. & Song, Z.-C. (2011). Acta Cryst. E67, o1999. [DOI] [PMC free article] [PubMed]
  6. Sheldrick, G. M. (1996). SADABS University of Gottingen, Germany.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Sun, L.-X., Yu, Y.-D. & Wei, G.-Y. (2011a). Acta Cryst. E67, o1564. [DOI] [PMC free article] [PubMed]
  9. Sun, L.-X., Yu, Y.-D. & Wei, G.-Y. (2011b). Acta Cryst. E67, o1578. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811029977/su2298sup1.cif

e-67-o2204-sup1.cif (14.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811029977/su2298Isup2.hkl

e-67-o2204-Isup2.hkl (109.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811029977/su2298Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES