Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jul 30;67(Pt 8):o2206–o2207. doi: 10.1107/S1600536811030340

A monoclinic polymorph of (1E,5E)-1,5-bis­(2-hy­droxy­benzyl­idene)thio­carbono­hydrazide

Bonell Schmitt a, Thomas Gerber a, Eric Hosten a, Richard Betz a,*
PMCID: PMC3213636  PMID: 22091213

Abstract

The title compound, C15H14N4O2S, is a derivative of thio­ureadihydrazide. In contrast to the previously reported polymorph (ortho­rhom­bic, space group Pbca, Z = 8), the current study revealed monoclinic symmetry (space group P21/n, Z = 4). The mol­ecule shows non-crystallographic C 2 as well as approximate C s symmetry. Intra­molecular bifurcated O—H⋯(N,S) hydrogen bonds, are present. In the crystal, inter­molecular N—H⋯S hydrogen bonds and C—H⋯π contacts connect the mol­ecules into undulating chains along the b axis. The shortest centroid–centroid distance between two aromatic systems is 4.5285 (12) Å.

Related literature

For the crystal structure of the ortho­rhom­bic polymorph of the title compound reported without three-dimensional coordinates, see: Yanping et al. (1999). For the crystal structure of a methyl­ated derivative of the title compound, see: Affan et al. (2010). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995). Structures containing similar C=S distances were retrieved from the Cambridge Structural Database (Allen, 2002). For chelate ligands in coordination chemistry, see: Gade (1998).graphic file with name e-67-o2206-scheme1.jpg

Experimental

Crystal data

  • C15H14N4O2S

  • M r = 314.36

  • Monoclinic, Inline graphic

  • a = 5.6020 (1) Å

  • b = 7.4260 (2) Å

  • c = 34.5220 (8) Å

  • β = 91.225 (1)°

  • V = 1435.80 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 200 K

  • 0.20 × 0.17 × 0.10 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008) T min = 0.879, T max = 1.000

  • 13304 measured reflections

  • 3578 independent reflections

  • 2830 reflections with I > 2σ(I)

  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048

  • wR(F 2) = 0.116

  • S = 1.11

  • 3578 reflections

  • 209 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811030340/kj2182sup1.cif

e-67-o2206-sup1.cif (17.4KB, cif)

Supplementary material file. DOI: 10.1107/S1600536811030340/kj2182Isup2.cdx

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811030340/kj2182Isup3.hkl

e-67-o2206-Isup3.hkl (175.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811030340/kj2182Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

C g1 and C g2 are the centroids of the C11–C16 and C21–C26 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H81⋯N2 0.84 1.87 2.597 (2) 144
O1—H81⋯S1 0.84 2.99 3.7096 (14) 145
O2—H82⋯N4 0.84 1.89 2.617 (2) 144
O2—H82⋯S1 0.84 3.08 3.8135 (16) 147
N1—H71⋯S1i 0.86 (2) 2.53 (2) 3.3514 (17) 159 (2)
N3—H73⋯S1i 0.85 (3) 2.82 (3) 3.5605 (18) 147 (2)
C16—H16⋯Cg2i 0.95 2.81 3.423 (2) 123
C26—H26⋯Cg1i 0.95 2.74 3.438 (2) 130

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank Mrs Gisela Bräuer for helpful discussions.

supplementary crystallographic information

Comment

Chelate ligands have found widespread use in coordination chemistry due to the enhanced thermodynamic stability of resultant coordination compounds in relation to coordination compounds exclusively applying comparable monodentate ligands (Gade, 1998). Combining different donor atoms, a molecular set-up to accomodate a large variety of metal centers of variable Lewis acidity is at hand. In this aspect, the title compound seemed particularily interesting due to its use as strictly neutral or – depending on the pH value – as anionic or cationic ligand. In addition, due to the set-up of its donor atoms, a multitude of differently-sized chelate ligands can be formed. The presence of a thioketo group as well as amino groups, hydroxyl groups and imine-type nitrogen atoms further enhances the versatility of the title compound's ligating abilities. In our continuous interest in elucidating the rules influencing the formation of coordination compounds with different set-ups of NOS-donor atoms, we determined the crystal structure of the title compound to enable comparative studies with geometric parameters in envisioned coordination compounds. Although the compound has been reported to crystallize in the orthorhombic space group Pbca (Yanping et al., 1999), we found a monoclinic polymorph. Furthermore, no three-dimensional coordinates have been deposited for the former structure solution. The molecular and crystal structure of a methyl-substituted derivative of the title compound is apparent in the literature as well (Affan et al., 2010).

The molecule is essentially planar. The least-squares planes defined by the carbon atoms of the phenyl groups (including the respective C=N moiety) intersect at an angle of only 5.33 (8) °. The least-squares plane defined by the atoms of the central N2C=S motif encloses angles of 7.26 (8) ° and 11.75 (7) ° with the aforementioned least-squares planes, respectively (Fig. 1). The C=N double bonds are invariably (E)-configured. The length of the C=S bond is in good agreement with values reported for other thioketones whose crystal structural data have been deposited with the Cambridge Structural Database (Allen, 2002), the reported range being 1.297–1.864 Å.

In the crystal structure, intra- as well as intermolecular hydrogen bonds are apparent. While the intramolecular hydrogen bond – stemming from the hydroxyl group – shows bifurcation between the sulfur atom as well as the imine-type nitrogen atom, the intermolecular hydrogen bonds exclusively have the sulfur atom as acceptor. The presence of the sulfur-supported hydrogen bond is complemented by the results of IR spectroscopy that show the presence of three bands in the region for hydrogen bonds between oxygen, nitrogen and sulfur. In addition, C–H···π contacts can be observed that involve hydrogen atoms on the aromatic system. In terms of graph-set analysis (Etter et al., 1990; Bernstein et al., 1995), the descriptor for the bifurcated hydrogen bond is S(6)S(9) on the unitary level while the amino-group-supported hydrogen bonds necessitate a C11(4)C11(4) descriptor on the same level. A binary descriptor of R12(6) emphasizes the "chelation" of the sulfur atom by the two secondary amino groups. In total, the molecules are connected to waved, zigzag-type chains along the crystallographic b axis. The shortest intercentroid distance between two π-systems was measured at 4.5285 (12) Å and involves both aromatic moieties (Fig. 2).

Experimental

The compound was prepared upon reacting thiocarbohydrazide (0.50 mmol) with ortho-hydroxybenzaldehyde (1.00 mmol) in refluxing ethanol (15 ml) under nitrogen in analogy to a published procedure (Yanping et al., 1999). Crystals suitable for the X-ray diffraction study were obtained upon slow evaporation of the reaction mixture.

Refinement

Carbon-bound H atoms were placed in calculated positions (C—H 0.95 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C). The H atom of the hydroxyl groups were allowed to rotate with a fixed angle around their respective C—O bonds to best fit the experimental electron density (HFIX 147 in the SHELX program suite (Sheldrick, 2008)). The H atoms of the amine groups were located on a difference Fourier map and refined with individual displacement parameters.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level).

Fig. 2.

Fig. 2.

Intermolecular contacts, viewed along [-1 0 0]. Depicted are intramolecular (green dashed lines) as well as intermolecular (blue dashed lines) hydrogen bonds and C–H···π contacts (red dashed lines). Symmetry operators: i -x + 1, y - 1/2, -z + 1/2; ii -x + 1, y + 1/2, -z + 1/2.

Crystal data

C15H14N4O2S F(000) = 656
Mr = 314.36 Dx = 1.454 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybc Cell parameters from 3781 reflections
a = 5.6020 (1) Å θ = 3.3–28.2°
b = 7.4260 (2) Å µ = 0.24 mm1
c = 34.5220 (8) Å T = 200 K
β = 91.225 (1)° Block, colourless
V = 1435.80 (6) Å3 0.20 × 0.17 × 0.10 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer 3578 independent reflections
Radiation source: fine-focus sealed tube 2830 reflections with I > 2σ(I)
graphite Rint = 0.027
φ and ω scans θmax = 28.3°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −7→7
Tmin = 0.879, Tmax = 1.000 k = −9→9
13304 measured reflections l = −46→45

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116 H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.0459P)2 + 0.6828P] where P = (Fo2 + 2Fc2)/3
3578 reflections (Δ/σ)max < 0.001
209 parameters Δρmax = 0.31 e Å3
0 restraints Δρmin = −0.30 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.12373 (8) 0.21558 (7) 0.258163 (14) 0.02903 (14)
O1 0.1741 (2) 0.2387 (2) 0.36537 (4) 0.0324 (3)
H81 0.2203 0.2637 0.3430 0.049*
O2 −0.1378 (2) 0.2458 (2) 0.15547 (4) 0.0383 (4)
H82 −0.0382 0.2723 0.1731 0.057*
N1 0.5251 (3) 0.3922 (2) 0.27723 (4) 0.0281 (4)
H71 0.646 (4) 0.457 (3) 0.2711 (6) 0.037 (6)*
N2 0.4749 (3) 0.3542 (2) 0.31484 (4) 0.0265 (3)
N3 0.4199 (3) 0.4051 (2) 0.21391 (5) 0.0294 (4)
H73 0.546 (5) 0.466 (4) 0.2103 (7) 0.053 (8)*
N4 0.2684 (3) 0.3694 (2) 0.18331 (4) 0.0274 (3)
C1 0.3648 (3) 0.3442 (2) 0.24941 (5) 0.0248 (4)
C2 0.6209 (3) 0.4048 (2) 0.34167 (5) 0.0256 (4)
H2 0.7674 0.4613 0.3355 0.031*
C3 0.3279 (3) 0.4210 (2) 0.14954 (5) 0.0255 (4)
H3 0.4739 0.4834 0.1460 0.031*
C11 0.5583 (3) 0.3740 (2) 0.38171 (5) 0.0237 (4)
C12 0.3391 (3) 0.2956 (3) 0.39193 (5) 0.0258 (4)
C13 0.2860 (3) 0.2726 (3) 0.43090 (6) 0.0303 (4)
H13 0.1391 0.2186 0.4378 0.036*
C14 0.4458 (4) 0.3279 (3) 0.45949 (6) 0.0319 (4)
H14 0.4073 0.3126 0.4860 0.038*
C15 0.6625 (4) 0.4057 (3) 0.44992 (6) 0.0312 (4)
H15 0.7718 0.4439 0.4697 0.037*
C16 0.7166 (3) 0.4266 (3) 0.41139 (6) 0.0270 (4)
H16 0.8656 0.4783 0.4049 0.032*
C21 0.1696 (3) 0.3832 (2) 0.11659 (5) 0.0239 (4)
C22 −0.0524 (3) 0.2973 (3) 0.12065 (6) 0.0287 (4)
C23 −0.1919 (4) 0.2586 (3) 0.08796 (6) 0.0345 (5)
H23 −0.3413 0.2000 0.0907 0.041*
C24 −0.1148 (4) 0.3048 (3) 0.05168 (6) 0.0368 (5)
H24 −0.2114 0.2772 0.0295 0.044*
C25 0.1036 (4) 0.3915 (3) 0.04711 (6) 0.0336 (5)
H25 0.1562 0.4234 0.0221 0.040*
C26 0.2414 (3) 0.4301 (3) 0.07948 (5) 0.0277 (4)
H26 0.3896 0.4903 0.0765 0.033*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0237 (2) 0.0299 (3) 0.0336 (3) −0.0028 (2) 0.00372 (17) 0.0010 (2)
O1 0.0251 (7) 0.0398 (8) 0.0323 (7) −0.0086 (6) 0.0007 (5) 0.0014 (6)
O2 0.0254 (7) 0.0448 (9) 0.0447 (8) −0.0075 (6) 0.0017 (6) 0.0091 (7)
N1 0.0250 (8) 0.0338 (9) 0.0255 (8) −0.0060 (7) 0.0014 (6) 0.0048 (7)
N2 0.0276 (8) 0.0275 (8) 0.0245 (8) 0.0005 (7) 0.0027 (6) 0.0037 (6)
N3 0.0279 (8) 0.0351 (10) 0.0250 (8) −0.0074 (7) −0.0010 (6) 0.0033 (7)
N4 0.0258 (8) 0.0285 (9) 0.0277 (8) −0.0019 (7) −0.0019 (6) −0.0007 (7)
C1 0.0240 (9) 0.0211 (9) 0.0292 (9) 0.0036 (7) 0.0019 (7) 0.0003 (7)
C2 0.0230 (9) 0.0236 (9) 0.0303 (9) −0.0002 (7) 0.0023 (7) 0.0041 (7)
C3 0.0235 (9) 0.0235 (9) 0.0296 (9) −0.0008 (7) −0.0003 (7) −0.0003 (7)
C11 0.0233 (8) 0.0193 (9) 0.0286 (9) 0.0021 (7) 0.0031 (7) 0.0026 (7)
C12 0.0226 (8) 0.0226 (9) 0.0322 (9) 0.0013 (7) 0.0016 (7) 0.0008 (8)
C13 0.0265 (9) 0.0299 (10) 0.0347 (10) 0.0021 (8) 0.0073 (8) 0.0050 (8)
C14 0.0372 (11) 0.0314 (11) 0.0273 (9) 0.0063 (9) 0.0054 (8) 0.0023 (8)
C15 0.0358 (10) 0.0312 (11) 0.0264 (9) 0.0010 (9) −0.0037 (8) −0.0011 (8)
C16 0.0234 (9) 0.0235 (9) 0.0340 (10) −0.0007 (7) −0.0018 (7) 0.0009 (7)
C21 0.0224 (8) 0.0197 (9) 0.0296 (9) 0.0029 (7) −0.0016 (7) −0.0014 (7)
C22 0.0230 (8) 0.0233 (9) 0.0397 (10) 0.0028 (8) −0.0002 (7) 0.0021 (8)
C23 0.0250 (9) 0.0249 (10) 0.0534 (13) 0.0002 (8) −0.0081 (9) −0.0013 (9)
C24 0.0354 (11) 0.0314 (11) 0.0428 (11) 0.0076 (9) −0.0158 (9) −0.0074 (9)
C25 0.0367 (11) 0.0353 (12) 0.0288 (10) 0.0099 (9) −0.0027 (8) −0.0024 (8)
C26 0.0254 (9) 0.0255 (10) 0.0319 (10) 0.0032 (8) −0.0002 (8) 0.0008 (8)

Geometric parameters (Å, °)

S1—C1 1.6867 (19) C12—C13 1.394 (3)
O1—C12 1.356 (2) C13—C14 1.381 (3)
O1—H81 0.8400 C13—H13 0.9500
O2—C22 1.359 (2) C14—C15 1.390 (3)
O2—H82 0.8400 C14—H14 0.9500
N1—C1 1.349 (2) C15—C16 1.379 (3)
N1—N2 1.364 (2) C15—H15 0.9500
N1—H71 0.86 (2) C16—H16 0.9500
N2—C2 1.279 (2) C21—C26 1.395 (3)
N3—C1 1.348 (2) C21—C22 1.407 (3)
N3—N4 1.367 (2) C22—C23 1.389 (3)
N3—H73 0.85 (3) C23—C24 1.377 (3)
N4—C3 1.278 (2) C23—H23 0.9500
C2—C11 1.451 (2) C24—C25 1.394 (3)
C2—H2 0.9500 C24—H24 0.9500
C3—C21 1.455 (2) C25—C26 1.375 (3)
C3—H3 0.9500 C25—H25 0.9500
C11—C16 1.396 (3) C26—H26 0.9500
C11—C12 1.411 (2)
C12—O1—H81 109.5 C13—C14—C15 120.65 (17)
C22—O2—H82 109.5 C13—C14—H14 119.7
C1—N1—N2 118.38 (15) C15—C14—H14 119.7
C1—N1—H71 119.2 (15) C16—C15—C14 119.13 (18)
N2—N1—H71 121.9 (15) C16—C15—H15 120.4
C2—N2—N1 119.14 (16) C14—C15—H15 120.4
C1—N3—N4 119.14 (16) C15—C16—C11 121.80 (18)
C1—N3—H73 121.2 (17) C15—C16—H16 119.1
N4—N3—H73 119.7 (17) C11—C16—H16 119.1
C3—N4—N3 118.46 (16) C26—C21—C22 118.51 (17)
N3—C1—N1 113.38 (16) C26—C21—C3 119.15 (16)
N3—C1—S1 123.54 (14) C22—C21—C3 122.33 (17)
N1—C1—S1 123.06 (14) O2—C22—C23 117.24 (17)
N2—C2—C11 118.67 (16) O2—C22—C21 123.01 (17)
N2—C2—H2 120.7 C23—C22—C21 119.73 (18)
C11—C2—H2 120.7 C24—C23—C22 120.37 (19)
N4—C3—C21 119.25 (17) C24—C23—H23 119.8
N4—C3—H3 120.4 C22—C23—H23 119.8
C21—C3—H3 120.4 C23—C24—C25 120.72 (19)
C16—C11—C12 118.32 (17) C23—C24—H24 119.6
C16—C11—C2 119.49 (16) C25—C24—H24 119.6
C12—C11—C2 122.18 (17) C26—C25—C24 118.90 (19)
O1—C12—C13 117.24 (16) C26—C25—H25 120.6
O1—C12—C11 122.97 (16) C24—C25—H25 120.6
C13—C12—C11 119.79 (17) C25—C26—C21 121.76 (18)
C14—C13—C12 120.30 (18) C25—C26—H26 119.1
C14—C13—H13 119.9 C21—C26—H26 119.1
C12—C13—H13 119.9
C1—N1—N2—C2 −177.46 (17) C13—C14—C15—C16 −0.2 (3)
C1—N3—N4—C3 −176.94 (18) C14—C15—C16—C11 0.8 (3)
N4—N3—C1—N1 −178.39 (16) C12—C11—C16—C15 −0.7 (3)
N4—N3—C1—S1 3.2 (3) C2—C11—C16—C15 177.92 (17)
N2—N1—C1—N3 173.21 (16) N4—C3—C21—C26 −176.19 (17)
N2—N1—C1—S1 −8.4 (2) N4—C3—C21—C22 2.4 (3)
N1—N2—C2—C11 176.08 (16) C26—C21—C22—O2 179.74 (17)
N3—N4—C3—C21 179.64 (16) C3—C21—C22—O2 1.1 (3)
N2—C2—C11—C16 179.37 (17) C26—C21—C22—C23 1.1 (3)
N2—C2—C11—C12 −2.0 (3) C3—C21—C22—C23 −177.55 (17)
C16—C11—C12—O1 −179.45 (17) O2—C22—C23—C24 −179.10 (18)
C2—C11—C12—O1 1.9 (3) C21—C22—C23—C24 −0.4 (3)
C16—C11—C12—C13 0.0 (3) C22—C23—C24—C25 −0.2 (3)
C2—C11—C12—C13 −178.65 (17) C23—C24—C25—C26 0.1 (3)
O1—C12—C13—C14 −179.87 (17) C24—C25—C26—C21 0.6 (3)
C11—C12—C13—C14 0.7 (3) C22—C21—C26—C25 −1.2 (3)
C12—C13—C14—C15 −0.6 (3) C3—C21—C26—C25 177.45 (17)

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C11–C16 and C21–C26 rings, respectively.
D—H···A D—H H···A D···A D—H···A
O1—H81···N2 0.84 1.87 2.597 (2) 144.
O1—H81···S1 0.84 2.99 3.7096 (14) 145.
O2—H82···N4 0.84 1.89 2.617 (2) 144.
O2—H82···S1 0.84 3.08 3.8135 (16) 147.
N1—H71···S1i 0.86 (2) 2.53 (2) 3.3514 (17) 159 (2)
N3—H73···S1i 0.85 (3) 2.82 (3) 3.5605 (18) 147 (2)
C16—H16···Cg2i 0.95 2.81 3.423 (2) 123
C26—H26···Cg1i 0.95 2.74 3.438 (2) 130

Symmetry codes: (i) −x+1, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KJ2182).

References

  1. Affan, M. A., Chee, D. N. A., Ahmad, F. B. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o555. [DOI] [PMC free article] [PubMed]
  2. Allen, F. H. (2002). Acta Cryst. B58, 380–388. [DOI] [PubMed]
  3. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  4. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  5. Bruker (2008). SADABS Bruker Inc., Madison, Wisconsin, USA.
  6. Bruker (2010). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  7. Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [DOI] [PubMed]
  8. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  9. Gade, L. H. (1998). Koordinationschemie, 1. Auflage. Weinheim: Wiley-VCH.
  10. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  13. Yanping, R., Rongbin, D., Liufang, W. & Jigui, W. (1999). Synth. Commun. 29, 613–617.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811030340/kj2182sup1.cif

e-67-o2206-sup1.cif (17.4KB, cif)

Supplementary material file. DOI: 10.1107/S1600536811030340/kj2182Isup2.cdx

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811030340/kj2182Isup3.hkl

e-67-o2206-Isup3.hkl (175.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811030340/kj2182Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES