Abstract
The nucleotide sequence for alpha alpha enolase (non-neuronal enolase: NNE) of rat brain and liver was determined from recombinant cDNA clones. The sequence was composed of 1722 bp which included the 1299 bp of the complete coding region, the 108 bp of the 5'-noncoding region and the 312 bp of the 3'-noncoding region containing a polyadenylation signal. In addition, the poly(A) tail was also found. A potential ribosome-binding site was located 30 nucleotides upstream to the initiation codon in the 5'-noncoding region. The amino acid sequence deduced from the nucleotide sequence was 433 amino acids in length and showed very high homology (82%) to the amino acid sequence of gamma gamma enolase (neuron-specific enolase: NSE), although the nucleotide sequence showed slightly lower homology (75%). The size of NNE mRNA was approximately 1800 bases by Northern transfer analysis and much shorter than that of NSE mRNA (2400 bases) indicating a short 3'-noncoding region. A dot-blot hybridization and Northern transfer analysis of cytoplasmic RNA from the developing rat brains using a labeled 3'-noncoding region of cDNA (no homology between NSE and NNE) showed a decrease of NNE mRNA at around 10 postnatal days and then a gradual increase to adult age without changes of mRNA size. Liver mRNA did not show any significant change during development.
Full text
PDF













Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Benyajati C., Spoerel N., Haymerle H., Ashburner M. The messenger RNA for alcohol dehydrogenase in Drosophila melanogaster differs in its 5' end in different developmental stages. Cell. 1983 May;33(1):125–133. doi: 10.1016/0092-8674(83)90341-0. [DOI] [PubMed] [Google Scholar]
- Birnboim H. C., Doly J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 1979 Nov 24;7(6):1513–1523. doi: 10.1093/nar/7.6.1513. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chan Y. L., Gutell R., Noller H. F., Wool I. G. The nucleotide sequence of a rat 18 S ribosomal ribonucleic acid gene and a proposal for the secondary structure of 18 S ribosomal ribonucleic acid. J Biol Chem. 1984 Jan 10;259(1):224–230. [PubMed] [Google Scholar]
- Dagert M., Ehrlich S. D. Prolonged incubation in calcium chloride improves the competence of Escherichia coli cells. Gene. 1979 May;6(1):23–28. doi: 10.1016/0378-1119(79)90082-9. [DOI] [PubMed] [Google Scholar]
- Goldberg D. A., Posakony J. W., Maniatis T. Correct developmental expression of a cloned alcohol dehydrogenase gene transduced into the Drosophila germ line. Cell. 1983 Aug;34(1):59–73. doi: 10.1016/0092-8674(83)90136-8. [DOI] [PubMed] [Google Scholar]
- Hagenbüchle O., Santer M., Steitz J. A., Mans R. J. Conservation of the primary structure at the 3' end of 18S rRNA from eucaryotic cells. Cell. 1978 Mar;13(3):551–563. doi: 10.1016/0092-8674(78)90328-8. [DOI] [PubMed] [Google Scholar]
- Hagenbüchle O., Tosi M., Schibler U., Bovey R., Wellauer P. K., Young R. A. Mouse liver and salivary gland alpha-amylase mRNAs differ only in 5' non-translated sequences. Nature. 1981 Feb 19;289(5799):643–646. doi: 10.1038/289643a0. [DOI] [PubMed] [Google Scholar]
- Hanahan D., Meselson M. Plasmid screening at high colony density. Gene. 1980 Jun;10(1):63–67. doi: 10.1016/0378-1119(80)90144-4. [DOI] [PubMed] [Google Scholar]
- Holmes D. S., Quigley M. A rapid boiling method for the preparation of bacterial plasmids. Anal Biochem. 1981 Jun;114(1):193–197. doi: 10.1016/0003-2697(81)90473-5. [DOI] [PubMed] [Google Scholar]
- Kato K., Okagawa Y., Suzuki F., Shimizu A., Mokuno K., Takahashi Y. Immunoassay of human muscle enolase subunit in serum: a novel marker antigen for muscle diseases. Clin Chim Acta. 1983 Jun 30;131(1-2):75–85. doi: 10.1016/0009-8981(83)90354-6. [DOI] [PubMed] [Google Scholar]
- Konkel D. A., Tilghman S. M., Leder P. The sequence of the chromosomal mouse beta-globin major gene: homologies in capping, splicing and poly(A) sites. Cell. 1978 Dec;15(4):1125–1132. doi: 10.1016/0092-8674(78)90040-5. [DOI] [PubMed] [Google Scholar]
- Kozak M. Compilation and analysis of sequences upstream from the translational start site in eukaryotic mRNAs. Nucleic Acids Res. 1984 Jan 25;12(2):857–872. doi: 10.1093/nar/12.2.857. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kuwano R., Usui H., Maeda T., Fukui T., Yamanari N., Ohtsuka E., Ikehara M., Takahashi Y. Molecular cloning and the complete nucleotide sequence of cDNA to mRNA for S-100 protein of rat brain. Nucleic Acids Res. 1984 Oct 11;12(19):7455–7465. doi: 10.1093/nar/12.19.7455. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Land H., Grez M., Hauser H., Lindenmaier W., Schütz G. 5'-Terminal sequences of eucaryotic mRNA can be cloned with high efficiency. Nucleic Acids Res. 1981 May 25;9(10):2251–2266. doi: 10.1093/nar/9.10.2251. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maxam A. M., Gilbert W. Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol. 1980;65(1):499–560. doi: 10.1016/s0076-6879(80)65059-9. [DOI] [PubMed] [Google Scholar]
- Noguchi T., Inoue H., Nakamura Y., Chen H. L., Matsubara K., Tanaka T. Molecular cloning of cDNA sequences for rat M2-type pyruvate kinase and regulation of its mRNA. J Biol Chem. 1984 Feb 25;259(4):2651–2655. [PubMed] [Google Scholar]
- Parnes J. R., Velan B., Felsenfeld A., Ramanathan L., Ferrini U., Appella E., Seidman J. G. Mouse beta 2-microglobulin cDNA clones: a screening procedure for cDNA clones corresponding to rare mRNAs. Proc Natl Acad Sci U S A. 1981 Apr;78(4):2253–2257. doi: 10.1073/pnas.78.4.2253. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sakimura K., Araki K., Kushiya E., Takahashi Y. Partial purification and characterization of messenger RNA coding 14-3-2 protein from rat brain. J Neurochem. 1982 Aug;39(2):366–370. doi: 10.1111/j.1471-4159.1982.tb03957.x. [DOI] [PubMed] [Google Scholar]
- Sakimura K., Yoshida Y., Nabeshima Y., Takahashi Y. Biosynthesis of the brain-specific 14-3-2 protein in a cell-free system from wheat germ extract directed with poly(A)-containing RNA from rat brain. J Neurochem. 1980 Mar;34(3):687–693. doi: 10.1111/j.1471-4159.1980.tb11198.x. [DOI] [PubMed] [Google Scholar]
- Schibler U., Pittet A. C., Young R. A., Hagenbüchle O., Tosi M., Gellman S., Wellauer P. K. The mouse alpha-amylase multigene family. Sequence organization of members expressed in the pancreas, salivary gland and liver. J Mol Biol. 1982 Mar 5;155(3):247–266. doi: 10.1016/0022-2836(82)90004-3. [DOI] [PubMed] [Google Scholar]
- Tinoco I., Jr, Borer P. N., Dengler B., Levin M. D., Uhlenbeck O. C., Crothers D. M., Bralla J. Improved estimation of secondary structure in ribonucleic acids. Nat New Biol. 1973 Nov 14;246(150):40–41. doi: 10.1038/newbio246040a0. [DOI] [PubMed] [Google Scholar]
- Tsutsumi K., Mukai T., Hidaka S., Miyahara H., Tsutsumi R., Tanaka T., Hori K., Ishikawa K. Rat aldolase isozyme gene. J Biol Chem. 1983 May 25;258(10):6537–6542. [PubMed] [Google Scholar]
- Tsutsumi K., Mukai T., Tsutsumi R., Mori M., Daimon M., Tanaka T., Yatsuki H., Hori K., Ishikawa K. Nucleotide sequence of rat liver aldolase B messenger RNA. J Biol Chem. 1984 Dec 10;259(23):14572–14575. [PubMed] [Google Scholar]
- Tsutsumi R., Tsutsumi K., Numazaki M., Ishikawa K. Two different aldolase A mRNA species in rat tissues. Eur J Biochem. 1984 Jul 2;142(1):161–164. doi: 10.1111/j.1432-1033.1984.tb08264.x. [DOI] [PubMed] [Google Scholar]
- Weber A., Marie J., Cottreau D., Simon M. P., Besmond C., Dreyfus J. C., Kahn A. Dietary control of aldolase B and L-type pyruvate kinase mRNAs in rat. Study of translational activity and hybridization with cloned cDNA probes. J Biol Chem. 1984 Feb 10;259(3):1798–1802. [PubMed] [Google Scholar]
- White B. A., Bancroft F. C. Cytoplasmic dot hybridization. Simple analysis of relative mRNA levels in multiple small cell or tissue samples. J Biol Chem. 1982 Aug 10;257(15):8569–8572. [PubMed] [Google Scholar]
- Yoshida Y., Sakimura K., Masuda T., Kushiya E., Takahashi Y. Changes in levels of translatable mRNA for neuron-specific enolase and non-neuronal enolase during development of rat brain and liver. J Biochem. 1983 Nov;94(5):1443–1450. [PubMed] [Google Scholar]
- Young R. A., Hagenbüchle O., Schibler U. A single mouse alpha-amylase gene specifies two different tissue-specific mRNAs. Cell. 1981 Feb;23(2):451–458. doi: 10.1016/0092-8674(81)90140-9. [DOI] [PubMed] [Google Scholar]



